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Abstract

In a setting of diffused imperfect knowledge among agents about the fundamentals of
the economy, a benevolent public authority learns about the fundamentals by observing
agents’ actions. In any period the public authority decides how much of its knowledge to
communicate in a public signal. While public communication improves current welfare,
it may hamper the authority’s learning process. The public signal crowds out private
information from agents’ actions, which is the valuable source of learning for the pub-
lic authority, leading to future less precise public communication: this is the jamming
effect of public communication. Simulations of the model show that the welfare maxi-
mizing communication strategy over time can deviate from full disclosure of the public
authority’s information. In particular, it can be optimal to garble the public message,
that is, add noise to the public signal.
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1 Introduction

Since the seminal paper of Morris and Shin (2002), Social Value of public infomartion

economists have been debating the welfare benefits of public communication. Morris and

Shin, in this and in a companion article (Morris and Shin (2005), have argued that public

communication can be welfare decreasing since it implies over-reliance on public information

with respect to what is efficient. They apply their argument to Central Banks communica-

tion and derive the implication that transparency may actually be welfare decreasing.

The message spurred a sequence of paper on the subject. Svensson (2006) criticizes the

results of Morris and Shin (2002), saying that for plausible values of parameters, actually

their model is pro transparency, not con. Angeletos and Pavan (2007) have shown that

Morris and Shin’s hypothesis of complementarities in actions among agents is indeed fun-

damental for having negative effects of public information. However in a different context,

Amador and Weill (2010), have shown that public information can have negative welfare

effects because it can reduce the informational value of prices.

Morris and Shin (2002)’s model and following analyses have been static, and charac-

terized by an exogenous source of public information. This approach misses what are two

fundamental characteristics of public information. The first characteristics is that infor-

mation flow is usually bi-directional between public authorities and agents, thus public

information is never purely exogenous. If we think about the operate of a Central Bank,

for instance, their source of information are economic data, which are decisions of agents

and as such incorporate their private information and public information about the state

of the world.

The second characteristics of information is that timing, that is, when information

is available to agents, matters. Agents in the real world take decisions continuosly, and

availability of information in some periods and not in other is welfare relevant. Consider

a firm trying to choose production according to information about the business cycle. If

investment choices are irreversible, then whether information about the businnes cycle is

available or not at the time of the decision becomes a fundamental determinant of the

profitability of choices.

This work will try to approach the problem of the social value of public communication

by tackling the two above mentioned characteristics. We build a model in which agents

have diffused information about an evolving state of the world. A public authority learns

about the evolving state of the world by observing with measurement error an aggregate

statistics of the agents actions and can communicate to the the agents with a public signal.
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There is therefore an informational flow from the agents to the public authority through

aggregate statistics, and from the public authority to the agents through the public signal.

The model tackles then the timing characteristics with the normative questions: when

and how much of the public knowledge should the public authority reveal every period?

The analysis will show that precise communication in any period might not be optimal.

Optimal communication plan involve periods of no communication or garbling, that is, the

knowledge of the public authority is communicated with noise.

The reason for the result lies in the circularity of information flow. Public communication

at any point in time crowds out private information from agents’ actions, therefore reducing

the informativeness of aggregate statistics to the agency. This effect can be vicious, leading

to an actual decrease in the quantity of information future public communication can reveal.

This is the jamming effect : public communication blocks the arrival of new information

to the public authority. By not communicating or garbling in some periods the agency

increases the informative value of the aggregate statistics, and can communicate with more

precision in the future. The choice of public communication therefore entails computing the

marginal cost of not revealing precisely today with the marginal benefit of revealing more

precise information in the future.

The implication of the model is that transparency might backfire. In particular when

deciding a public communication strategy it is important to realize that the source of public

information, how this is collected, has to be taken into account in order to avoid negative

feedbacks of communication.

The model is abstract, but it can be applied to a variety of situations. We can think of

the decision actors as firms trying to forecast the business cycle. Each firm has to choose

production choices given their information about the cycle. The public authority, in this

case the Federal Reserve or the Bureau of Labor Statistics decide then when and how much

of its information to release. Miccoli (2010) studies the informational flow between financial

institutions choosing portfolio compositions and a public authority set up to watch over their

decisions.

However the model can also be applied to non-economic situations. In May 2000, the

National Highway Traffic Safety Administration contacted the Ford company regarding a

problem of tires exploding with some their models and causing rollovers of the vehicles

involved. During the events, it was not clear which models of tires and vehicles were

affected. This is clearly a case in which agents’ actions, the driving of Ford vehicles, affected

the collection of information and the learning of the facts, which model of cars and tires are

subject to explosion. The prediction of the analysis in this work thus imply that extensive
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public communication about the few known facts could have led to a decrease in the accident

rate, however it might have prevented effective learning about the car models and types

of tires involved. Instead, no or sparse public communication, even though it decreased

safety during the periods of silence, would have led to accumulation of observations and the

discovery of the precise source of the tires explosion.1

The structure of the paper is the following. Next section briefly discuss the related

literature. Then section (3) presents the model and discusses the source of the trade-

off between present and future public communication. Section (4) set up the dynamic

programming for the model, explores numerical solutions, and provides an interpretation of

the results with an easy two periods model. Section (5) concludes.

2 Related Literature

Apart from the works already cited in the introduction, this work is connected to the

literature on speed of convergence of beliefs, started by Vives (1993) and expanded by

Amador and Weill (2009). Vives (1993) shows that the presence of a public signal of an

aggregate of agents’ actions decreases the speed of converge of rational expectations to

the truth. Amador and Weill (2009) add to the public signal a private endogenous signal,

coming from mouth-to-mouth discussions among agents. They show that the releasing a

public signal at the beginning of the interaction among agents can lead to welfare losses.

What distinguishes this work from these previous two papers is the question. In Vives and

Amador and Weill’s work the public signal is always present, and as such, it cannot be

modified. Their analysis captures the informational flow but does not capture the timing

question.

Vives (1997) can be considered a first attempt at moulding public information in such

a way to increase welfare. The mechanism in Vives (1997) and in this work is similar. As

in Vives’ analysis, also in this model the public signal creates an informational externality:

agents rely too much with respect to what is optimal, and this creates under-production

of future information. However in Vives’ work the public signal is thought as coming from

market interactions, hence the object of analysis are cooperative approaches to information

use that could increase welfare. Here the public signal is the explicit decision of an actor,

and through its decisions, it tries to solve the informational externality.

1I thank Mitchell Polinsky for providing me with this example.
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3 Model

The model has two actors: agents and a public authority, which we will call as the agency.

This section explains objectives and choices of both of them, and how the information flow

between them depends on their choices.

3.1 Agents

Time is infinite, t = 0, 1, 2, . . . , and there is a continuum i ∈ [0, 1] of agents in each period

t. Agents are short lived, i.e. at the beginning of every period t there is a new generation

of individuals which takes an action and dies at the end of the period.2 The economy is

characterized by a state θt which follows a random walk process determined by:

θt = θt−1 + εt (1)

where ε ∼ N(0, σ2). θt is not known by the agents, however each agent i in every pe-

riod t wants to choose an action to be as close as possible to the unknown parameter θt.

We are going to assume the simplest possible functional form that delivers this behaviour

description. Hence the objective of the agent is given by:

min
ai,t

Ei,t
[
(ai,t − θt)2

]
(2)

where the Ei,t [·] defines the expections operator conditional on the information available to

agent i at time t about θt. Given the quadratic objective the optimal choice is to set:

ai,t = Ei,t[θt] (3)

3.1.1 Information available to Agents

In every period t agents have an uninformative prior over θt. But every agent i in period

t has at his disposal two types of information about θt. The first type of information is

private, coming from a private signal observed only by agent i at the beginning of t:

θi,t = θt + ηi,t (4)

2This is equivalent to assuming that individuals have no memory, i.e. they don’t carry information from
the past. The assumption of memoryless agents is done for tractability of the problem. Analysis without
this assumption can be done only in much less general settings. See for instance Miccoli (2010).
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where ηi,t ∼ N(0, p−1) is identically and independently distributed (i.i.d.) in the cross

section of agents and across time. p, the inverse of the variance, is defined as the precision

of the signal θi,t about θt. As it is customary in the literature, we will measure information

in units of precision.

In addition to the private information, the agents has available public information,

coming from communication common to all agents. The structure of the public signal is

endogenous in the model, and depends on the information collection process of the agency

explained below. For now we assume the following conjecture, which will be proved true

later.

Conjecture 1. The public signal in period t, mt is, conditional on θt, normally distributed,

with E[mt|θt] = 0 and Var[mt|θt] = P−1
t . Moreover mt|θt is independent of ηi,t for all t,

for all i.

With the public and private information available at their disposal, the agents update

their uninformative prior over θt. Given the normality assumptions and indipendence of

signals, standard Bayesian updating implies that the posterior mean about θt will be a

convex combination of private and public information, with weights given by the relative

precision of signals, and the posterior variance is the inverse of the sum of the precisions of

the two signals:

Ei,t[θt] =
p

p+ Pt
θi,t +

Pt
p+ Pt

mt

Vari,t[θt] =
1

p+ Pt
.

Given the FOC (3) the agents’ action will reflect their mean posterior about θt. Note that

the variance of the posterior is common to all agents, since the agents’ information sets

differ by the realization of the private signal θi,t, but this signal is assumed to have common

precision across the agents.

3.2 Agency

In the economy there is a public agency, with the authority to observe aggregate of the

agents’ actions and to send public messages to all agents about the unknown parameter θt.

The object of the agency is to maximizie the ex-ante aggregate welfare of the agents. Both

the content of the public signal and the object of the agency will be defined in the next two

paragraphs.
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3.2.1 Collection of Information by the Agency

In period t = 0, the Agency has an uninformative prior over θ0. However at the end of every

period t the Agency has the authority to observe, with measurement error, an aggregate of

the actions of the agents. At the end of the period t it receives a signal:

S̃t =

∫
ai,t di+ νt (5)

where νt is the measurement error, distributed normally with 0 mean and precision ψν ,

i.i.d across time, and independent of ηi,t, for all i, t. Substituting in the optimal action

of the agents, and assuming the convention that the laws of large number holds, so that∫
ηi,t di = 0, we obtain that S̃t = p

p+Pt
θt + Pt

p+Pt
mt + νt. The Agency uses this signal in

order to update its information about θt. However, the only relevant part for the learning

of the Agency is the aggregate of private information of the agents, since mt, being sent

by the same Agency, is already part of its information set. Therefore the signale S̃t is

observationally equivalent to a signal:

St ≡
p+ Pt
p

[
S̃t −

Pt
p+ Pt

mt

]
= θt +

p+ Pt
p

νt (6)

The Agency uses the signal St and its prior on θt in order to form a posterior on θt. Given

a history of signals St−1 = {S1, S2, . . . , St−1}, all normally distributed, let µA,t and αt be

respectively the mean and variance of the Agency’s prior at time t of θt, conditional on the

observation of history St−1. Then the update of the agency at time t is determined by:

E[θt|St] =
α−1
t

α−1
t +

(
p

p+Pt

)2
ψν

µA,t +

(
p

p+Pt

)2
ψν

α−1
t +

(
p

p+Pt

)2
ψν

St (7)

Var[θt|St] =
1

α−1
t +

(
p

p+Pt

)2
ψν

(8)

These define the posterior of the Agency on θt at the end of period t. This estimate will

be carried on into next period t + 1. We need to transform it however into an estimate of

θt+1. Given that θt follows a martingale, then µA,t+1 = E[θt+1|St] = E[θt|St], and

αt+1 = Var[θt+1|St] = Var[θt + εt|St] =
1

α−1
t +

(
p

p+Pt

)2
ψν

+ σ2 (9)

6



3.2.2 Diffusion of Information by the Agency

We are now ready to verify the conjecture about the structure of the public signal. At the

beginning of every period t, conditional on observed history St, the agency sends a public

signal with its mean belief about θt:

mt = µA,t + φt (10)

where φt ∼ N(0,Φ−1
t ) independent across time and of everything else. Φt, the precision

of the signal of the agency conditional on its mean beliefs, is the object of choice of the

agency. The agency can continuously change the precision in order to reveal more or less

information at its disposal. If Φt → 0 then the agency is sending no message, if Φt → ∞,

the agency is exactly revealing its mean belief. For any value in between the agency is

garbling, that is, sciently obfuscating its knowledge in the public message.

Given the properties of the Bayesian updating, µA,t is a martingale, and so µA,t is an

unbiased signal of θt.
3 Since by assumption φt has mean zero, then mt is an unbiased signal

of θt. Note that mt is function only of the measurement error νt and of the noise added by

the agency φt. Hence it is orthogonal to the noise present in the private signal θi,t. Also,

given the independence assumption of φt, the variance of mt conditional on θt is determined

by the sum of the variance of the belief of the agency αt, and the variance of the noise,

1/Φt, the agency decides to tack on its message. Therefore by letting

1

αt + 1/Φt
≡ Pt (11)

we have verified the conjecture on the structure of the public signal.

Equation (9) and (11) fully specify the evolution of the precision of public knowledge

among the agents given the choice of communication of the agency. Note that if Φt → ∞
then Pt → 1/αt, that is, if the agency is perfectly communicating its mean beliefs, the

precision of public knowledge is the same as the precision of the Agency. Conversely, if

Φt → 0, then Pt → 0, that is, when the agency is not communicating there is no public

knowledge.

3On the properties of Bayesina updating, see for instance Vives (2008).

7



3.2.3 Welfare Objective

The Agency has the objective to maximize the aggregate ex-ante welfare W of the agents,

where each future generation is discounted at rate β < 1:

W = −
∞∑
t=0

βt
∫ 1

0
Ei,t

[
(ai,t − θt)2

]
di (12)

Note that agents were minimizing a welfare loss function. Instead of defining the problem

over the welfare loss we defined welfare to be the negative of the welfare loss. By substituting

in W the optimal choice ai,t = Ei,t[θt], we obtain Ei,t
[
(Ei,t[θt]− θt)2

]
= Vart[θt] = 1

p+Pt
.

The ex-ante indirect utility function is just the posterior variance of beliefs of the agents

about θt, as argued before common across agents. The result that ex-ante we need only to

care about precision of information and not realization of signals is a consequence of the

linear-quadratic setting with normality assumption. Generically it need not be the case.

The problem the agency wants to solve is:

max
{Φt}∞t=1

∞∑
t=1

βt
[
− 1

p+ Pt

]
(13)

s.t. αt+1 =
1

α−1
t +

(
p

p+Pt

)2
ψν

+ σ2

Pt =
1

αt + 1/Φt

α1 = 1/ψν

Note that in period t = 0, there cannot be meaningful communication on the part of the

Agency, since both agents and Agency share the same uninformative prior. It’s only after

t = 0 that the Agency has different information than the agents, since it has observed

S0, therefore choosing how much the agency wants to reveal of her knowledge becomes a

meaningful problem. Given that in t = 0 there is no public communication, the signal to

the agency is S0 = θ0 +ν0, therefore the variance of the belief of the agency at the beginning

of period t = 1 is determined only by this signal, hence α1 = 1/ψν , pinning down the initial

condition for the infinite horizon sequential problem.
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3.2.4 The trade-off between providing more information today or tomorrow

Public communication is welfare improving in any period: if the agency is communicating

with high precision in period t, agents have more knowledge about the unknown parameter

θt, therefore they will choose more precise actions, increasing their welfare. This is shown

by the ex-ante welfare of the agents being increasing in Pt.

However note that, the more precise the signal the agency sends in period t, the less the

agency will know about θt+1 in period t + 1, since by equation (9), ∂αt+1

∂Pt
> 0. This is so

because agents will effectively use the more precise public signal and will rely heavily on it.

However learning for the agency is higher when the agents only use their private information,

since the public message is already in the information sets of the agency. Remember from

equation (6) that the precision of signal the agency receives, conditional on θt is given by(
p

p+Pt

)2
ψν . As we see, higher Pt implies a less precise signal to the agency, since agents

use less of their private knowledge, which is the source of new information for the agency.

Therefore more precise public communication today implies less precise information arriving

to the agency next period.

This effect has a simple implication: when the agency decides how much to communicate

tommorow, for any communication strategy it wants to follow, it will be able to provide less

information. This is clear since Pt+1 = 1
αt+1+1/Φt+1

, and therefore ∂Pt+1

∂αt+1
< 0 for any Φt+1.

But then communicating more precisely in any period t does not have a negative effect

on communication only in t+1. Given that the agency has memory, for any communication

plan it decides in the future, communicating today will always imply less information in the

future, and therefore less precise public communication in the future, that is:

∂Pt+s
∂Φt

< 0, ∀s ≥ 1 (14)

The trade-off between the present public communication and future public communication

is clear. By sending a very precise signal today the agency helps current individuals, however

it prevents precise public communication tomorrow and therefore reduces welfare for agents

tomorrow. When optimally choosing the agency has to trade-off the welfare benefits to

current generation of agents to the welfare cost to future agents.

Whether or not the agency would like in some period t not to send a precise public signal

depends on the marginal benefit to current generation of agents of one additional unit of

precision in public signal versus the marginal cost to future generations. Let w(Pt) = − 1
p+Pt

9



define the ex-ante aggregate welfare of agents in generation t. If

∂w(Pt)

∂Φt
> −

∞∑
s=t+1

βs−t
∂w(Ps)

∂Φt
(15)

then the agency would like to increase the precision of the public message. However it is

easy to check that w(Pt) is concave in Pt, therefore there are decreasing marginal returns

in units of precision of the public signal. Conversely the costs will be convex, i.e., there

are increasing marginal cost of precision of public information in t. This implies that there

can be a limit to the public information the agency wants to provide in any period t. If

equation (15) holds with equality, then there is a positive level of noise in public signal

which is optimal. The agency will find it optimal to garble its message today in order to

preserve efficient learning and effecive future public communication.

The trade-off implied by public communication today or tomorrow does not depend on

the asssumption of a new generation of agents being born in any period. Miccoli (2010)

shows that this effect is also present when agents are long lived and have memory. What

is important is the circularity of the information flow between agents and the agency. Note

also that the result does not depend on any not optimal decision on the part of the agents.

When agents receive the public signal, each of them is individually too small to affect

on its own the precision of information collected in the future by the agency. Therefore

they optimally fully rely on the public information. However, relying on the public signal

implies that the agency is not able to fully learn, hence there is under-production of future

information.

4 The optimal communication plan

4.1 Dynamic Programming

In order to solve the problem we are going to use a dynamic programming approach and

then numerical simulations. It is clear that the prior precision of the knowledge about θt

the agency has at any point in time αt can be used as state variable: it summarizes all past

decisions of communications of the agency and tracks the evolution of θt.

By rearranging constraint (9) and substing it into the objective function, we can rewrite
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the problem only in terms of the state:

max
{αt+1}∞t=1

∞∑
t=1

βt

{
−
[

1

p2ψν

(
1

αt+1 − σ2
− 1

αt

)]1/2
}

(16)

s.t. σ2 +
1

1/αt + ψν
≤ αt+1 ≤ σ2 +

1

1/αt +
(

p
p+1/αt

)2
ψν

(17)

α1 = 1/ψν

Before setting up the dynamic programming problem, we can already note some properties

that the optimal solution will surely have, since they are implied by the constraint set.

Proposition 1. In any optimal solution {α∗t+1}t, for any t, α∗t+1 > σ2

Proof. Let l(αt) and h(αt) define respectively the lower and higher bound of αt+1 from

equation (17). As αt → 0, then both l(αt) and h(αt) tend to σ2, reaching their lower

bound. Hence for any αt, αt+1 > σ2 for all t. This will imply in particular that the optimal

solution α∗t+1 has to be greater than σ2, for all t.

This proposition reflects the assumption that θt is a random walk, hence for any choice

of the public communication plan by the agency, in any period the agency cannot perfectly

know θt. If the agency in some period t has very good knowledge about θt, then even if

it does not send a public signal, it will know less about θt+1, just by the random walk

assumption. Therefore variance of beliefs will always be bounded away from 0.

Proposition 2. The problem admits a steady state region [α′, α′′], α′ > σ2, that is, if for

some t, αt ∈ [α′, α′′], then αt+1 ∈ [α′, α′′]. Moreover, there exists T such that, for all t > T ,

α∗t+1 ∈ [α′, α′′]

Proof. Let l(αt) and h(αt) define respectively the lower and higher bound of αt+1 from

equation (17). Showing that the boundaries of the constraint set have slope less then 1,

together with the proof of proposition (1) which says that l(αt), h(αt) → σ2 as αt → 0, is

sufficient to prove the existence of the steady state region.

∂h(αt)

∂αt
=

1

α2
t

(
1/αt +

(
p

p+ 1/αt

)2

ψν

)−2 [
1− 2

p2

(p+ 1/αt)3
ψν

]
,

∂l(αt)

∂αt
=

1

α2
t

(1/αt + ψν)−2
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It’s easy to show that ∂h(αt)
∂αt

< 1 for all parameter values, since:

∂h(αt)

∂αt
< 1 ⇐⇒

[
1− 2

p2

(p+ 1/αt)3
ψν

]
<

(
1 +

(
p

p+ 1/αt

)2

ψναt

)2

⇐⇒ −2
p2

(p+ 1/αt)3
ψν <

(
p

p+ 1/αt

)4

ψ2
να

2
t + 2

(
p

p+ 1/αt

)2

ψναt

Also ∂l(αt)
∂αt

< 1 since

∂l(αt)

∂αt
< 1 ⇐⇒ 1

α2
t

< (1/αt + ψν)2 ⇐⇒ 0 < 2
ψν
αt

+ ψ2
ν

Since the slope of l(αt) is less than 1 and l(0) = σ2 > 0, we can define α′ : l(α′) = α′. Note

also that ∂l(αt)
∂αt

> 0 for all αt, ψν <∞ hence α′ > σ2.

For the higher bound of the steady state region, we need to consider that h(αt) achieves

its maximum in α∗ when 1/2 = p2

(p+1/α∗)3ψν . Therefore we will define α′′ = h(α∗) if

h(α∗) > α∗, otherwise α′′ : h(α′′) = α′′. Given that ∂l(αt)
∂αt

, ∂h(αt)
∂αt

< 1, if αt ∈ [α′, α′′], then

αt+1 ∈ [α′, α′′].

The fact that the boundaries of the constraint set have slope less than 1 also implies

that for whatever starting point, the optimal solution will eventually converge to the region

[α′, α′′].

The proposition says that eventually the beliefs of the agency will converge to a well

defined region and never move from there. The intuition for this is straightforward. Even if

the agency starts with a very large prior variance for θt, then either by communicating or not

communicating, it will receive a relatively precise signal about θt, since agents will not rely

a lot on the public signal if they receive it. Therefore the agency learns and prior variance

for θt+1 can be smaller than prior variance for θt. On the other hand, by proposition (1)

we know that perfect knowledge will never be achieved, and if the agency starts with very

good knowledge about θt, for any communication decision, it will know less about θt+1.

Therefore in any optimal policy it will never be the case that either the agency knows less

and less, nor that it has perfect knowledge.

It must be noted that the previous proposition does not say anything about the be-

haviour of the optimal solution inside the steady state region nor out of it. It says that the

agency will converge to a well specified interval of belifs, either by learning if it start with

low knowledge, or by ’forgetting’, if the knowledge about θt is not that useful for knowing
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θt+1. But convergence to this region happens for whatever public communication decision.

We are now going to rewrite the sequential problem (16) as a functional equation prob-

lem. Let y ≡ αt+1, x ≡ αt and F (x, y) ≡
{
−
[

1
p2ψν

(
1

y−σ2 − 1
x

)]1/2
}

. Then the functional

problem is defined as:

v(x) = max
y∈Γ(x)

F (x, y) + βv(y) (18)

where Γ(x) is the correspondence defined by the constraint (17). The following proposition

establishes equivalence between the solutions of the two problems, and justifies the use of

numerical simulations to find the solutions.

Proposition 3. Let x ∈ X ⊆ R and the operator T on the space of continuous and bounded

functions C(X) be defined as (Tf)(x) = maxy∈Γ(x) F (x, y) + βf(y). Then T maps C(X)

into itself, T is a contraction and has a unique fixed point v ∈ C(X); and for all v0 ∈ C(X)

||Tnv0 − v|| ≤ βn||v0 − v||, n = 0, 1, 2, . . . (19)

Moreover the solutions in terms of value and optimal plans of the functional equation prob-

lem (18) coincide witht the solutions of the sequential problem (16).

Proof. The proof follows standard theorems from Stokey and Lucas (1989). The only re-

quirement is to show that F (x, y) is bounded. This is done noticing that x, y > 0. In fact

x = Var[θt|St−1] = Var[θt−1|St−1] + σ2. Even if there is perfect knowledge of θt−1 such

that Var[θt−1|St−1] = 0, as long as σ2 > 0 then x > 0. The same will be true for y, hence

F (x, y) is bounded.

It is also clear that Γ(x) is not-empty, compact valued, and continuous. Then we can

apply Theorem 4.6, page 79 of Stokey and Lucas (1989) to prove the first part of the

statement. The equivalence of solutions between the sequential problem and the functional

problem is given by Theorems 4.2 - 4.5.

Unfortunately, there are not standard arguments that can be made to prove properties of

the value function v(x) or of the optimal policy function g(x), defined as g(x) = {y ∈ Γ(x) :

v(x) = F (x, y) + βv(y)}. The reason is that the constraint correspondence Γ(x) is highly

irregular, not satisfying properties of monotonocity or convexity for all parameters values.

For instance the higher bound of the constraint set can be monotonic or not monotonic in

its argument x, depending on parameter values. We will therefore rely on the numerical

approach to find the optimal solution.
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4.2 The jamming effect of the public signal

Before relying on the numerical simulations, we will analyze in this section a particular

case. We want to analyze the evolution of the precision of public knowledge if the agency

is communicating in every period with no garbling. This will shed insights on the peculiar

effects of public signals on knowledge of the agents.

When the agency is always precisely communicating, there is no distinction between

public knowledge of the agents and knowledge of the agency. The agency becomes irrelevant

in the story and the model becomes one in which agents are receiving a public signal of the

aggregate of previous period actions. However public information in this case is somewhat

special, because it is not lost after one period: agents transmit public knowledge to the

following generation. Note that this special case allows us to focus precisely on the effects

of public information when the source of this information is the observation of an aggregate

of the agents’ actions in the economy.

Proposition 4. Suppose Φt → ∞, for all t. Then the evolution of precision of public

knowledge is given by Pt+1 =

{
σ2 +

[
Pt +

(
p

p+Pt

)2
ψν

]−1
}−1

. If ψν
p > 1

2 , then there exists

P ′ such that Pt+1 is decreasing in Pt for Pt ≤ P ′ (weakly when Pt = P ′), and increasing

for Pt > P ′. Otherwise Pt+1 is monotonically increasing in Pt.

Proof. By equation (11), if Φt → ∞, then 1/αt = Pt. By using the higher bound of the

constraint set defined in equation (17), the equation describing the evolution of Pt+1 is

found.

It can be easily checked that the sign of ∂Pt+1

∂Pt
depends on the sign of 1

2 −
p2

(p+Pt)3
ψν . Let

f(Pt) ≡ p2

(p+Pt)3
ψν , then limPt→∞f(Pt) → 0 and f(0) = ψν

p . Since f ′(Pt) < 0, if ψν
p > 1

2 ,

then there exists P ′ such that f(Pt) >
1
2 for Pt < P ′, otherwise f(Pt) <

1
2 for all Pt.

Therefore, if ψνp > 1
2 , ∂Pt+1

∂Pt
< 0 for Pt < P ′ (with equality when Pt = P ′), and ∂Pt+1

∂Pt
> 0

for Pt > P ′. Otherwise ∂Pt+1

∂Pt
> 0.

The proposition highlights two effects of public information. In one case, when ψν
p ≤

1
2 ,

the public signal always increases knowledge about θt. An increase in the level of precision

of public knowledge today leads to an increase in public knowledge tomorrow, in this sense

public knowledge is self-sustaining. However this is not true anymore when ψν
p > 1

2 . In

this case, for small values of Pt, an increase in Pt actually makes Pt+1 decrease. What is

happening is that for sufficiently low values of precision of public knowledge, an increase

in Pt makes agents rely more on the public signal than on private knowledge, therefore
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learning through the public channel is impaired. Future public signals cannot communicate

more information and public knowledge decreases.

The effect is clearer if we consider the special case of a constant θ, that is σ2 = 0. Then

the evolution of public knowledge becomes:

Pt+1 = Pt +

(
p

p+ Pt

)2

ψν (20)

From previous equation we can see that an increase in Pt has two effects. The first one is

a positive increase on Pt+1 given by Pt. This is the memory effect : if agents know more

today they will know more tomorrow. The second one is the negative effect coming from the

aggregate signal of past actions. This is the jamming effect : an increase in Pt implies that

agents rely more on their private knowledge and therefore the precision of the aggregate

signal,
(

p
p+Pt

)2
ψν , decreases. The proposition says that for low values of Pt, the jamming

effect dominates the memory effect: more public information today can actually decrease

future public information.

This effect happens only when 2ψν > p, that is, when the measurement error of the

aggregate signal is sufficiently more precise than the private information of the agents. If,

on the other hand, private knowledge was sufficiently more precise, then an increase in Pt

would always have a negative effect on the precision of the public signal. Only now it would

not be sufficient to overcome the memory effect on public information, and therefore more

public information today increases future public information.

This explanation has been done for the stark case of the agency always fully communi-

cating, and therefore it is as if agents had memory. However the memory effect is present

as long as the agency is communicating something, because the agency is the storage for

public knowledge, and so, as long as it communicates, it communicates also past public

knowledge.

Note also that a decrease in public knowledge per se does not imply a decrease in the

welfare criterion, given that we have to evaluate an infinite sum of utilities. However we

will show that this effect is welfare relevant through the numerical solutions.

4.3 Numerical Solutions

We are going to analyze the optimal policy solution as parameter values {β, σ2, ψν , p}
change. For a particular application in mind we would like to calibrate parameters,4 how-

4Fogli and Veldkamp (2007) have a learning model in which they calibrate parameters similar to ours in
the context of women learning about the effect of their working choice on the achievements of their children.
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ever here we are interested in finding some properties of the solution. In the following figures

we are going to represent the policy function that solves the functional problem (18).

In all figures, on the x-axis there is the current value of the state variable, that is αt,

the variance of the prior beliefs of the agency about θt, and on the y-axis the future (one

period ahead) value of the state, αt+1. The dashed lines represent the higher and lower

bound of the constraint set defined by equation (17). Therefore the higher bound defines

the value of the state tomorrow when the agency is precisely communicating in period t,

that is Φt → ∞, and the lower bound defines the value of the state tomorrow when the

agency is not communicating in period t, that is Φt = 0. The dashed-point line indicates

the 45 line. The thick red line between the higher and lower bound indicates the policy

function.

4.3.1 Optimal absence of public communication

In figure (1), {β, ψν , p} are fixed respectively to {0.95, 1, 1} and σ2, the term representing

the innovations of the random walk process, takes 3 different values in the three different

panels. The first panel in figure (1) is drawn for σ2 = 1. As we can see the policy function

is always on the higher bound, hence the optimal policy is always to communicate with full

precision. On the dynamics of the evolution of the state, depending on where we start, we

can learn or ’forget’, but the convergence to the steady state is monotonic.

In the second panel of figure (1), σ2 = 0.01, that is, there are ’smaller’ innovation in

the parameter θt, or, put differently, the term θt is relatively more constant over time. Now

the policy function is completely different, and it lies for some values of the state αt over

the lower bound of the constraint set. When this happens it is actually optimal to not

communicate, that is, the agency does not send a public message, Φt = 0.

This is the starkest solution the agency can put into effect in order to prevent the under-

production of information. By not sending the public message in that period the agency is

able to observe with more accurate precision the private information of the agents. When it

has acquired sufficient information, αt has become smaller, then it will start communicating

with full precision. Doing so it allows to achieve higher welfare than communicating for every

value of the state. Eventually, however, it will be optimal to communicate, and the variance

of prior beliefs converges to a long run steady state level. By not communicating, the agency

is effectively preventing the jamming effect to happen: no present public communication will

entail more precise future public signals. Note that by not communicating in some period,

the agency is actually damaging the agents alive in that period. However the welfare benefits

to later generations are higher than the welfare costs of not communicating for one period,
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and therefore aggregate welfare is higher.

In the third panel of figure (1), σ2 = 0.001, that is, there are even smaller innovations.

The policy function changes in a well defined way: there is a larger range of the current

value of the state that prescribes for not communication. The reason for this change is the

policy function when σ2 changes is clear. The smaller the σ2, the more constant is θt over

time. This in particular implies that the information collected in any period becomes more

valuable for the future. If σ2 → ∞, then the parameter θt would be completely different

every period, hence the information collected by the agency would have no implication for

future periods θt. In such case, always communicating is the optimal policy. However, if

σ2 = 0, then θt is constant over time, therefore being able to collect more precise information

in any one period has greater consequences over future public communication. This is why,

when σ2 decreases, it can be optimal for the agency to be silent in order to efficiently learn,

and the more so, the smaller is σ2.

In figure (2), {σ2, ψν , p} are fixed respectively to {0.03, 1, 1}, while β, the value at which

the agency discounts future generations, changes. In the first panel β = 0.9. Here, as in

the first panel of figure (1), the optimal policy is always to communicate. In the second

and third panel, β respectively takes the value of 0.95 and 0.99. In these panels we see

that the optimal policy also prescribes to be silent for some value of the state. However the

reason is different with respect to the previous case when we were letting σ2 change. In this

case the agency is valuing more the welfare of future generations, hence it will try to help

them more by shutting down current communication, and acquire more information for the

future. Note in fact that a higher β increases the marginal benefits as defined in equation

(15). Therefore, the higher the weight on future generations, the more likely (in terms of

larger range of the current value of the state) it is that the agency will choose to be silent.

4.3.2 Optimal garbling of public communication

In figure (3), {β, σ2, ψν} are fixed respectively to {0.95, 0.1, 1}, while, the precision of the

public signal of the agents, changes. In the first panel p = .01. The policy function says

that, for some values of the state, it is optimal to tack finite noise to the public message, that

is Φ∗t ∈ (0,∞). The agency will choose to communicate, but in order not to let the agents

rely too much on the public signal and therefore create under-production of information,

it will decide to add noise to its message. The agency is garbling its knowledge to the

individuals. This is a striking feature of the optimal communication plan: better than just

not communicating, as in previous instances, the agency provides the public signal in order

to partially improve the welfare of the current generation of agents, but garbles the message
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in order to efficiently communicate in the future.

As we can see from the other two panels, the policy function has non monotonic be-

haviour in p. As p increases the range of values for αt that imply a garbling of the public

message first increases, but then it is completely absent, leading again to an optimal policy

of precise communication. The intuition for this is that, when p is sufficiently precise, agents

already have large private information, hence public communication cannot affect welfare

too much. In this case there are no welfare advantage of garbling or shutting down the

public signal.

In figure (4), {β, σ2, p} are fixed respectively to {0.95, 0.1, 0.1}, while ψν , the precision

of the measurement error of the signal to the agency, changes. As ψν changes from 0.01,

in the first panel, to 100, in the third panel, we see that the optimal policy function shows

non monotonic behaviour. In the first and last panel the optimal solution is always to fully

communicate, while in the middle panel, there is a range of values for the state for which

it is optimal to garble. The intuition for this result is the following: when ψν is sufficiently

small (large), the precision of the signal to the agency is small (large) for any communication

policy. Therefore there is not too much knowledge that can be acquired by shutting down

communication. On the other hand, it is for intermediate values of ψν that the trade off

between present and future public communication becomes relevant in terms of welfare.

4.4 A simple two periods analysis

The infinite horizon intertemporal model is too complex to be analyzed analytically, hence

the use of numerical simulations. However a simple two periods model can be used in order

to replicate analytically the insights of the numerical simulations.

We are going to consider the same structure of the economy, but now t = 1, 2. Assume

also that σ2 = 0, so that θt is constant across the two periods. The agency sends a public

signal in period t before observing the actions for that period. We are going to assume that

in t = 2 the agency fully reveals her mean beliefs. The agency can decide however on the

precision of the public signal it sends in t = 1, defined by Φ. At the beginning of period

t = 1 the agency has prior beliefs over the variance of the θ given by α.

Aplying the model specified in (16) to this two periods case, we want the agency to solve
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the following problem:

min
Φ

1

p+ P1
+ β

1

p+ P2
(21)

s.t. P1 =
1

α+ 1/Φ

P2 = P1 +

(
p

p+ P1

)2

ψν

Let the problem be represented by minΦWL(α, β, ψν , p,Φ) and let Φ∗ = arg min WL(α, β, ψν , p,Φ).

The following two propositions shed lights on the simulations’ results.

Proposition 5. Necessary condition for Φ∗ <∞ is β > 3.

Proof. Let y ≡ p2

(p+P1)3
ψν . Then since Φ can take any value between 0 and infinity, y ∈

[ p2

(p+1/α)3
ψν ,

ψν
p ]. Notice that y → p2

(p+1/α)3
ψν as Φ → ∞, while y → ψν

p as Φ → 0. The

problem can therefore be rewritten as:

min
y

(
y

p2ψν

)1/3(
1 +

β

1 + y

)

Let f(·) define the objective. Equalizing to zero the first order condition ∂f(·)
∂y gives a

quadratic equation in y: y2 + 2(1 − β)y + (β + 1) = 0, whose roots are y1,2 = (β − 1) ±√
β(β − 3). Therefore necessary condition for having real roots is β > 3. It can be checked

that in this case both y1 and y2 are positive.

If roots are not real, from the first order condition, it can be checked that when β ≤
3, ∂f(·)

∂y > 0 (with equality when y = 2), therefore the unique global minimizer is y =
p2

(p+1/α)3
ψν , that is, Φ∗ →∞.

On the other hand when β > 3, ∂f(·)
∂y > 0 for y < y1, ∂f(·)

∂y < 0 for y1 < y < y2,

and ∂f(·)
∂y > 0 for y > y2. Therefore the function exhibits a local minimum in y2. If

p2

(p+1/α)3
ψν < y2 <

ψν
p , then, depending on the value of the f(·) at the extrema of the range

of y, y2 can be also the global minimizer. Since y2 belongs to the interior of the range of y,

then y2 being the minimizer implies Φ∗ <∞.

This proposition highlights a simple fact. It is necessary to have more than two periods

in order for the trade-off between present and future communication to be welfare relevant.

In the simple two periods setting with normal values for the discount factor β the trade-off

is not welfare relevant: even by shutting down communication in the first period, the welfare
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benefits given by the informative gains in the second period are not enough to justify the

welfare loss of not communicating in the first period. By raising the value of β higher than

1, the objective behaves as if we are adding more periods to the problem, hence the trade-off

between present and future communication becomes welfare relevant.

Proposition 6. Suppose β > 3, then:

i. there exist p′, ψ′ν , α′ and α̃, α′ < α̃, such that Φ∗ → ∞ for α < α′, 0 < Φ∗ < ∞ for

α′ < α < α̃, and Φ∗ →∞ for α > α̃;

ii. there exist p′′, ψ′′ν and α′′ such that Φ∗ →∞ for α < α′′ and Φ∗ = 0 for α > α′′;

iii. there exist p′′′, ψ′′′ν such that, for all α, Φ∗ →∞;

where ψ′′′ν
p′′′ <

ψ′′ν
p′′ <

ψ′ν
p′ .

Proof. From proposition (5) we know that if β > 3, there exists y1,2 = (β− 1)±
√
β(β − 3)

that solve the equation given by first order condition of the problem equalized to 0. Moreover

y1 is a local maximum and y2 is a local minimum.

i. Fix β > 3 and let p′, ψ′ν such that ψ′ν
p′ > y2(β). Since p2

(p+1/α)3
ψν is monotonically

increasing in α, it tends to 0 as α → 0 and it tends to ψν
p as α → ∞ then for α

sufficiently small the range of y is such that p′2

(p′+1/α)3
ψ′ν < y1(β) < y2(β) < ψ′ν

p′ .

y2(β) is a local minimum, in order to check whether it is a global minimum we need

to compare f(y2(β)) with f( p′2

(p′+1/α)3
ψ′ν). Note that f( p′2

(p′+1/α)3
ψ′ν) → 0 as α → 0,

and f( p′2

(p′+1/α)3
ψ′ν)→ f(ψ

′
ν
p′ ) as α→∞. On the other hand f(y2(β)) is always strictly

positive and independent of α, and by the choice of p′, ψ′ν , f(y2(β)) < f(ψ
′
ν
p′ ).

Therefore, using the sign of ∂f(·)
∂y , there exists α′ such that f(y2(β)) = f( p′2

(p′+1/α′)3ψ
′
ν)

and p′2

(p′+1/α′)3ψ
′
ν 6= y2(β) such that:

• for α < α′, f( p′2

(p′+1/α)3
ψ′ν) < f(y2(β)), therefore the global minimizer is y =

p′2

(p′+1/α)3
ψ′ν ;

• for α = α′, both y2(β) and p′2

(p′+1/α)3
ψ′ν are global minimizers;

• for α > α′ then there exists α̃ > α′ such that p′2

(p′+1/α̃)3
ψ′ν = y2(β) such that

– for α′ < α < α̃, f( p′2

(p′+1/α)3
ψ′ν) > f(y2(β)), therefore the global minimizer is

y2(β);

– for α > α̃ the global minimizer is p′2

(p′+1/α)3
ψ′ν .
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ii. Fix β > 3 and let p′′, ψ′′ν such that y1(β) < ψ′′ν
p′′ < y2(β). Using the same analysis as

before, for α sufficiently small p′′2

(p′′+1/α)3
ψ′′ν < y1(β) < ψ′′ν

p′′ . y1(β) is a global maximum.

The minimizer will depend on the value of the function f(·) at the extrema of the

range of y, that is we need to compare f( p′′2

(p′′+1/α)3
ψ′′ν ) and f(ψ

′′
ν
p′′ ). Given the signs of

∂f(·)
∂y , there exists α′′ such that f( p′′2

(p′′+1/α′′)3ψ
′′
ν ) = f(ψ

′′
ν
p′′ ) and p′′2

(p′′+1/α′′)3ψ
′′
ν 6=

ψ′′ν
p′′ such

that:

• for α < α′′, f( p′′2

(p′′+1/α)3
ψ′′ν ) < f(ψ

′′
ν
p′′ ), therefore the global minimizer is y =

p′′2

(p′′+1/α)3
ψ′′ν ;

• for α > α′′, f( p′′2

(p′′+1/α)3
ψ′′ν ) > f(ψ

′′
ν
p′′ ), therefore the global minimizer is y = ψ′′ν

p′′ ;

• for α = α′′, both y = p′′2

(p′′+1/α)3
ψ′′ν and y = ψ′′ν

p′′ are global minimizers.

iii. Fix β > 3, and let p′′′, ψ′′′ν such that ψ′′′ν
p′′′ < y1(β). Then ∂f(·)

∂y > 0 and the global

minimizer is y = p′′′2

(p′′′+1/α)3
ψ′′′ν .

By reminding that Φ∗ → ∞ as y → p2

(p+1/α)3
ψν , and that Φ∗ = 0 if y = ψν

p , the statement

is obtained.

This proposition replicates all the results obtained through the numerical solutions.

Notice that subcase i. replicates the case when there is finite amount of noise in the public

signal, for instance the policy function in the first panel of figure (3). For low values of the

state, the optimal policy is to precisely communicate, while for high values of the state, the

optimal policy is to garble. As in the numerical solution, there is a discontinuity in the two

period model solution when α = α′.

The discontinuity can be rationalized in this way. Suppose α is small, that is, precision

of knowledge of the agency is large. We are in the case when the memory effect wins over the

jamming effect. Public communication greatly improves welfare in the first period, and even

though it leads to under-production of information in the second period, it still improves

public information in the second period. As α increases, welfare in the first period decreases,

since there is less information communicated by the public signal. But also welfare in the

second period decreases, since agents are carrying less information from the first period.

When α increases more, the precision of public knowledge in first period, P1 still de-

creases. But then the jamming effect offsets the memory effect, and now P2 and P1 move

in opposite directions. A further increase in α leads to a decrease in P1 which leads to an

increase in P2. At this point the agency has the option to noise up the public signal. Given

that welfare in the first period is decreasing and convex in the variance of the public signal

of the first period, adding one additional unit of noise will entail a small marginal cost to
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the welfare in first period. However marginal benefit in the second period of noising up the

public signal are high for two reasons: we are at low levels of P2, and the jamming effect

greatly increases P2. Therefore the agency will optimally increase the amount of noise in

the public signal, raising P2 until marginal benefits are equated to the marginal costs. The

presence of the jamming effect entails the discrete jump between precisely communicating

and adding finite amounts of noise. Depending on its strength, the optimal decision might

be to add finite amount of noise or completely shut down public communication.

4.4.1 Garbling and the jamming effect

From a descriptive point of view, it is worthwhile understanding when garbling is preferred

to shutting down public communication. From proposition (6) we know that garbling will be

optimal with respect to no communication when the ratio ψν
p is sufficiently large. By looking

at the evolution of public knowledge, ∂Pt+1

∂Pt
= 1−2 1

(1+Pt/p)3
ψν
p . A higher value of ψνp implies

a higher jamming effect: a smaller decrease of the precision of public knowledge in the first

period can lead to a larger increase of public knowledge in the second period. Therefore

sending in the first period the public signal with some noise improves welfare for the first

period, while the large jamming effect allows to obtain anyway large informational gains,

and hence welfare improvements, for the second period. When there are large jamming

effect there is no need to completely shut down communication in order to obtain future

informational gains.

5 Conclusion

This work builds a model of informational flows between imperfectly informed agents and a

benevolent public authority. It shows that public communications coming from the author-

ity can have negative effects on future public communication, preventing efficient produc-

tion of information. In order to prevent the negative effect optimal public communication

strategies might involve silence or garbling, that is adding noise to the public signal.

The analysis could give a rationalization to FOMC statements. Several commentators

have seen FOMC statements as expressly ambigous, blurring sometimes the message and

the knowledge at their disposal. This behaviour might indeed be the optimal choice of the

FOMC in order not to reveal too much of their knowledge and not to make agents take

actions that are based only on common public information.

The general implication of this work is that trasparency can backfire. In particular, it

is fundamental to ascertain what is the source of the public information before deciding
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on the communication plan. If information comes from observing aggregate actions, then

public communication in any period might actually prevent effective learning. Therefore,

transparency, or complete and constant public communication, might not be the optimal

policy to follow.

The literature on the social value of public communication has always been abstract:

the future of this stream of literature has to be in a more applied approach, where effects

of public communication can be estimated in order to provide a quantification of its welfare

relevance.
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Figure 1: Polic function as function of σ2.
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Figure 2: Policy function as function of β.
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Figure 3: Policy function as function of p.
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Figure 4: Policy function as function of ψν .
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