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Abstract

This paper builds a dynamic model of the information flow between partially in-
formed financial institutions and a public agency. The financial institutions decide
how to allocate their portfolio between a riskless technology with known payoff and
a risky technology whose payoff is unknown. The public agency learns about the
value of the unknown payoff by observing with measurement error the actions of the
financial institutions and decides on whether to communicate the information at the
agency’s disposal. The paper characterizes the optimal public communication plan
and shows that full transparency (meant as revelation of information every period it
is collected) is not always optimal. Instead, optimal plans involve delayed commu-
nication, the amount of delay depending in non trivial manners on the precision of
private information and the size of the agency’s measurement error. The reason for
the result lies in the collection process of public information: while releasing informa-
tion improves the welfare of the agents, it also decreases the informational content of
their actions, hampering learning of the agency and reducing the benefits of future
public communication.
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1 Introduction

Government authorities, like the Federal Reserve, the Bureau of Labor Statistics, often
release documentation to the general public, might them be statistics or statements about
current economic conditions. The aim of this public communication is, usually, to help
decisions taking agents in situations when there is imperfect information about the state
of the world.1 As such, public communication is regarded as a welfare improving activ-
ity, and transparency, understood as the perfect communication of the knowledge govern-
ment institutions have, is considered to be a guiding principle in the decision for releasing
information for this type of institutions.

Recent body of research has been questioning the tenet of transparency.2 The seminal
paper of Morris and Shin (2002) identified a situation in which public communication
was actually welfare detrimental. If individuals have complementarities in their payoff
function, as in a beauty contest model in which each individuals would like to match
what everybody else believes, then public communication can create over-reliance on the
public information with respect to what is efficient. Amador and Weill (2010) present a
model in which communication about monetary aggregates decreases the informational
value of prices and might lead to welfare losses. Gala and Volpin (2010) show how public
information, by inducing aggregate risk taking, may have negative welfare effects.

This paper explores a different analysis on the matter of public communication deci-
sions with respect to previous work on two points. The first is that, while in previous
work the source of public information is exogenous, this paper posits that governmental
agencies learn about the state of the world by observing the actions of imperfectly in-
formed agents, therefore it assumes endogenous public information.3 This assumption
is not far-fetched. Institutions like the Fed, the BLS, collect data, which are outcomes
of the decisions of agents, analyze them and communicate their findings to the general
public. More recently, in the wake of the financial crisis, the Obama administration in-
stituted a Financial Stability Oversight Council, with the authority to ’collect information

1There can be a different aim of public communication by governmental institutions, that is to help the
public to correctly forecast the behavior of the institution. This is an important objective for Central Bank
communication decisions, however it is not the object of analysis here. The two however can be connected,
as further explored in the conclusions.

2Other than the cited work of Morris and Shin (2002), works questioning the positive welfare value of
public communication are, among others, Morris and Shin (2005), Angeletos and Pavan (2007),Amador and
Weill (2010), Gala and Volpin (2010), Lorenzoni (2010).

3If the object of information can be verified, then collection of information could be just based on direct
reports. However, since verifiability does not often happen, there are large incentive for anyone to lie. Even
if there are no incentives to lie, for instance when agents are infinitesimally small, then multiple equilibria
could arise, in which agents are indifferent to lying or not.
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from member agencies, other Federal and State financial regulatory agencies, the Federal Insur-
ance Office and, if necessary to assess risks to the United States financial system, direct the Office
of Financial Research to collect information from bank holding companies and nonbank financial
companies’(Dodd 2010) and share this information with other authorities or the general
public.

Collection of information and public communication become then intertwined pro-
cesses. Present public communication can affect the choices of the agents in the economy
through which the governmental agency will try to collect information in the future. If
future agents’ actions mostly reveal past public information, then learning of the agency
will be minimal, influencing future public communication. The circularity of the process
of collecting information and public communication can therefore have vicious effects
in the learning process of agents about the true state of the world, undermining the ob-
jective of public communication as providing more information to the economy and so
being welfare increasing.

The literature on informational cascades, for instance Banerjee (1992), already pointed
out how public signals based on other individuals’ choices can lead to inefficient deci-
sions. Vives (1993) describes how public signals coming from prices slow the rate of learn-
ing of individuals. However, differently from market signals, which cannot be barred
unless the market is shut down, public communication can be designed over time in such
a way as to achieve maximum efficiency. The second novel approach of this paper with
respect to the previous literature on information is to make public communication the
explicit choice of an actor. If the ultimate objective of public communication is to be wel-
fare improving for the agents, then we can ask the normative question of what is the
optimal public communication plan. If a benevolent governmental agency has the power
to decide whether they want to publicly release information or not, what is the welfare
maximizing public communication strategy?

This paper provides an answer to this question in a specific setting, suggested by the
Financial Stability Oversight Council introduced by the Financial Reform of the Obama
Administration. The model describes the informational flow between privately informed
financial institutions and a governmental agency that disseminates public information,
and asks the normative questions: what is the optimal plan of public communication?
Is it optimal to reveal information every time it is collected by the agency? In order to
focus exclusively on the learning determined by public communication, there will be no
markets in the model, and public communication will be the only source of learning for
financial institutions in addition their private knowledge.
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The main contribution of the paper is the characterization of optimal public commu-
nication plans. By first noting that it is always optimal to communicate at least in final
periods, we are initially going to restrict the analysis to public communication plans that
are monotonic, in the sense that might involve initial periods of silence, and after involve
communication. We show that in this class of communication plans it is not always opti-
mal to publicly communicate every time new information is collected by the governmen-
tal authority. Optimal communication plans can involve delay: governmental agencies
can maximize welfare by deciding to not communicate until they have acquired enough
knowledge, and then communicate.

The intuition for the result can be explained as follows. Financial institutions will base
their choice on the private and public information available to them. When the agency
observes the choices of financial institutions, it tries to extract their private knowledge,
the fundamental source of learning for the agency. By communicating to the public, the
agency induces actions that are based on public communication. Future observation of
actions will reveal less private information to the agency and thus decrease the amount of
learning by the agency. Therefore future public communication will be less informative.
Having less information in any period is welfare decreasing for the financial institution
since they cannot choose the correct investment. By not communicating in initial periods
the agency assures that future public communication will be highly informative. There-
fore delayed communication plans arise when the agency optimally trade-offs welfare
benefits of communicating more information in the future versus the welfare costs of not
communicating in initial periods. Delaying public communication can be welfare im-
proving especially when financial institutions do not have precise knowledge of the state
of the world. In determining the time of delay, two countervailing effects are important:
the delaying effect determined by excessive reliance on public communication versus the
anticipating effect determined by faster learning of the agency. The relative strength of
the two pushes towards later or earlier revelation times.

We then enlarge the class of communication plans by allowing any arbitrary sequence
of communication and silence periods in the plan. We show that enlarging the action
space of the agency does not alter the optimal solution found before: optimal public com-
munication plans always have a unique change of policy between not communicating
and communicating. This results implies that once public communication starts, it is
never optimal to stop communicating afterwards. For instance there is no advantage in
providing the financial institutions with some preliminary information, temporarily in-
creasing their welfare, then closing communication in order to let the agency efficiently
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learn, and then finally communicating. If conditions in the economy are such that it is
optimal to have periods of silence in the communication plan, than it is most efficient to
be silent at the beginning only.

The implication of the analysis is that transparency about fundamentals, understood
as perfect communication of governmental agency knowledge, can lead to welfare losses.
But while not communicating is never optimal, public communication can be timed in
such a way as to provide information most efficiently to agents. In contrast to the lit-
erature on the social welfare value of information started by Morris and Shin (2002), the
result is not based on socially inefficient complementarities in actions, but on the dynamic
inefficiencies of public communication. Transparency is not welfare decreasing per se, but
only because it prevents efficient use of the information in the economy. A governmental
agency should therefore take into account the dynamic nature of information diffusion
when thinking about release of information decisions, and realize that it might increase
knowledge (and therefore welfare) by choosing an optimal timing for disclosure.

The structure of the paper is the following. Below we provide the closest related liter-
ature. Section 2 describes the model and explains the welfare trade-off generated by the
public communication choice, while section 3 characterizes the optimal communication
plan and comments the results. Section 4 concludes and explains further directions for
research. The appendix provides all the proofs not given in the main text.

1.1 Related Literature

As discussed, this work is related to the literature on the social welfare value of informa-
tion as started by Morris and Shin (2002). Their analysis showed that public communica-
tion can be welfare decreasing in the presence of complementarities of actions. Angeletos
and Pavan (2007) extended the analysis to general quadratic utilities and showed that
public information can have negative or positive effects depending on the actions being
complementaries or substitutes. These models are all static, hence they abstract from the
learning process. Also differently than these models, our setup is on the dynamic ineffi-
ciencies of public communication, not on payoff externalities.

Hellwig (2005) and Lorenzoni (2010) study implications of diffused imperfect knowl-
edge and public signals for a monetary economy. Lorenzoni (2010) studies an economy in
which individuals cannot distinguish between shocks to fundamentals and noise shock,
and a monetary authority has to optimally set the policy rule. In this contest, increasing
the precision of the public signal may lead to aggregate welfare losses if the central bank
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does not optimally change its policy in light of the new precision of the public signal.
Differently than our work, knowledge is exogenous in these models, hence there is no
feedback between public communication and learning.

In their long reflections on the value of central banks’ transparency, Morris and Shin
(2005) discuss a central feature of this work: a public communication regime may entail
decreased precision of public information with respect to a not communicating regime
when information is endogenous. Their analysis, even though based on a dynamic model,
is on steady state properties of signals’ precision, and misses the dynamic approach, the
timing question and the welfare analysis present in this work.

Amador and Weill (2010) provides a different context in which public information
can be welfare decreasing. When agents learn from the price system, the release of in-
formation about monetary shocks decreases the informational value of prices, leading to
welfare losses. Their model is static and rooted in the substitutability of signals about
different fundamentals of the economy, while mine analyzes communication only about
one fundamental of the economy.

The social learning literature has analyzed the effects of the informational external-
ity of public signals, starting with Banerjee (1992). This work shows that the presence
of public communication may induce agents to disregard their private information and
base their decisions only on public information. This creates informational cascades and
herds which prevents agents to take the optimal action, decreasing welfare. However, the
standard herding models are sequential move games, and the appearance of cascades and
herds requires bounded beliefs and a discrete set of actions. My setup is characterized by
unbounded beliefs and actions lie in a continuous space.

The works most related to this paper are Vives (1993), Vives (1997), and Amador and
Weill (forthcoming). Vives analyzes a setup similar to mine, where agents learn from an
aggregate public signal of each others’ actions. Vives (1993) shows that the presence of
the public signal slows down convergence of beliefs, while Vives (1997) determines wel-
fare costs of the presence of the public signal. Amador and Weill (forthcoming) allows
for the possibility of learning from public and private aggregates of each others’ actions.
They show that increasing the quality of initial public information may lead to negative
welfare effects since it slows down the diffusion of the information through the agents.
The main focus on these works is on channels of communication that operate through
markets (prices) or through word-of-mouth, and not on governmental institutions’ com-
munication. My paper builds on these models but asks the different question of what is
the optimal disclosure plan of public information.
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Finally, this work is also related to the literature on information in financial markets,
as in Grossman (1976), Hellwig (1980). Differently than this literature, the focus is not on
information conveyed by prices but on information provided by public communication.

2 Model

The model represents the problem of a portfolio composition choice between a risky and
a riskless technology, whose payoffs are R, known, and θ, unknown, respectively. These
technologies are not publicly traded, hence there is no market mechanism determining
prices. A setting without markets has the advantage to isolate the pure effects of public
communication. In addition, this set up can also describe the situation when assets are
traded in unregulated markets in which transaction prices are not public, and therefore
do not constitute public signals about their returns.

The exposition of the model has five parts. The first part describes the problem of the
financial institutions. The second part defines the private and public information avail-
able to the financial institutions and determines their expectations. The third part intro-
duces the learning process for the agency. The fourth part defines the public message and
the endogenous information structure of the economy. The fifth part states the problem
of the agency of choosing the optimal public communication plan given the information
structure.

2.1 The Investment Decision of Financial Institutions

In the economy there is a continuum i ∈ [0, 1] of financial institutions. Time is discrete and
evolves from t = 0, . . . , T. In each period, each financial institution faces the problem of
choosing how to invest its wealth between two types of technologies, risky and riskless.
The payoff of these technologies realize in period T only and are given by R for the riskless
technology, and by θ for the risky technology.4 The payoff of the riskless technology R is
known, but the payoff of the risky technology θ is unknown by the financial institutions.
At time t = 0 all financial institutions have a common prior over the payoff θ given by
N(θ̄, 1/Pθ).

The value of θ characterizes the state of the world in period T, as such, the most gen-

4Investment options of financial institutions are usually more varied than just two types of technologies
(assets). The model can be easily extended to incorporate multiples technologies, for instance, see Admati
(1985)
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eral real world counterpart of θ is productivity over the business cycle,5 assumed to affect
the returns of the technology. This is also the most direct interpretation in terms of com-
munication of public agencies. But θ can also represent a shock to returns idiosyncratic
to the particular technology used. Idiosyncratic elements can be specific technical charac-
teristics of the technology (asset), like the exact definition of contract clauses for complex
securities. Public agencies that have the role to regulate markets are often involved in
communication over such matters.

Each financial institution is endowed at the beginning of time with some wealth al-
ready invested in the two technologies, Bi,−1 for the riskless technology and Di,−1 for
the risky technology. In any period t = 0, 1, . . . , T, the financial institution can choose
whether to change its position or not. If it does, it has to pay an adjustment cost. At any
time t the budget constraint is given by:

Bi,t−1 + Di,t−1 = Bi,t + Di,t +
λ

2
(Di,t − Di,t−1)

2 (1)

where prices have been normalized to one and λ > 0 parametrizes the adjustment costs.
The adjustment costs are directly related to the change in quantity of the risky technology
only. This assumption implies that costs determined by changing the quantity of risky
technology in a portfolio are first order with respect to costs determined by the change
in the riskless technology. For instance, if we consider Di,t as loans originating in the
financial institution, than there are front-office and back-office real costs that the financial
institution has to bear, such as interacting with the customers, determining the quality of
the loan, and so on. These costs are relatively greater than those a financial institution
would face when changing the quantity of wealth invested in riskless assets, where the
process is more streamlined (attending government bond auctions) and smaller real costs
have to be borne.

The financial institutions are risk neutral and want to maximize wealth at the end of
period T, when payoffs of the technologies are realized. Given its position in the two
technologies Bi,T and Di,T in final period T, wealth will be given by:

Wi,T = Bi,TR + Di,Tθ (2)

In any period t the financial institution i chooses Bi,t and Di,t with the objective of maxi-
mizing its expected wealth Wi,T subject to the budget constraint (1). By recursively sub-

5Miccoli (2010) studies in a similar setup the case when θ is evolving over time as a random walk.
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stituting Bi,t from the budget constraint, its final wealth is also equal to:

Wi,T = Bi,−1R + Di,−1θ + (θ − R)
T

∑
t=0

xi,t −
λR
2

T

∑
t=0

x2
i,t (3)

where xi,t ≡ Di,t − Di,t−1. Since in period t Di,t−1 is predetermined, we can represent the
choice of Di,t by xi,t, that is the change over last period technology holdings. Hence we
can rewrite the financial institution’s problem as:

max
{xi,t}T

t=0

Ei,0

[
Bi,−1R + Di,−1θ + (θ − R)

T

∑
t=0

xi,t −
λR
2

T

∑
t=0

x2
i,t

]
. (4)

The first order condition determining the change of position in the risky technology is
given by:

xi,t =
Ei,t[θ]− R

λR
. (5)

Two comments are necessary in order to explain how the models works. First, this model
allows for short-sale. This is a common feature of finance models with information6. Sec-
ond, the financial institution wants to change its composition of investment depending
on whether it thinks that E[θ] is greater or smaller than R. For instance, if it believes
E[θ] > R, it would like to invest everything in the risky technology. However it cannot
fully adjust in one period given the presence of the adjustment costs, hence it will keep
on changing every period their portfolio allocations until it reaches their optimal com-
position. Without loss of generality, from now on, λ and R will be both normalized to
1.

2.2 Information: Financial Institutions

Apart from the initial wealth endowment, in the previous section financial institutions are
all symmetrical. Information private to the financial institutions about the final payoff, θ,
is what introduces asymmetries in the model.

In every period t, financial institutions have two sources of information about the
payoff θ: private and public. The private source of information is a private signal about
θ:

θi = θ + ηi (6)

6As for instance in the basic CARA-Normal setup introduced by Grossman (1976)
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where ηi ∼ N(0, 1/p), independent and identically distributed (i.i.d) in the cross-section
of the economy. p, the inverse of variance of the ηi, defines the precision of the signal
conditional on θ, and, as is it customary in the literature, we will measure information in
units of precision.

The second source of information comes from public signals, observed by all finan-
cial institutions. In particular, in every period t the financial institutions receive, sent
by an agency introduced below, a public signal about θ defined by Θt(θ). Financial
institutions keep this information for the future and therefore, at any point in time t,
financial institutions have access to an history of public signals about θ indicated by
Θt = {Θ0(θ), Θ1(θ), . . . , Θt(θ)}. The origin and structure of this public signal are endoge-
nous in the model, and will be fully characterized below. The only conjecture needed now
is that the public signals are, conditional on θ, normally distributed, independent among
them and of θi. This conjecture will be proved true below.

It is convenient to study separately the information coming from public sources and
the information coming from private ones. Given a history of public signals about θ, the
financial institutions in any period t observe a new public signal, and update their beliefs
determined by public signals only by using Bayes’ Rule in order to form a posterior over
the distribution of θ. Since signals are normally distributed and independent, the conju-
gate, the distribution describing the posterior, will also be normal, and it is characterized
by:

µP
t = E[θ|Θt], (7)

Pt = Var−1
t [θ|Θt] (8)

where µP
t is the mean and Pt is the precision of information determined by public sig-

nals. The normality assumption implies that the mean of the posterior is also normally
distributed and it is a sufficient statistics for the public information.

Financial institutions use private and public information to determine their posterior
beliefs on θ. In any period t, using standard formulas for Bayesian updating with, condi-
tional on θ, normal and independent signals, the mean posterior beliefs of financial insti-
tutions about θ will be a convex combination of private and public signals, with weights
determined by their relative precisions, and the total precision will be given by the sum
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of the precisions of public and private information, that is:

Ei,t[θ] =
p

p + Pt
θi +

Pt

p + Pt
µP

t , (9)

Var−1
t [θ] = p + Pt. (10)

Note that the precision of beliefs does not depend on financial institutions’ specific
information, since the precision of private knowledge is common across financial insti-
tutions. What is different among them is the expectation, as given by their private in-
formation θi. The term p

p+Pt
determines the weight financial institutions place over their

private information. This is decreasing in Pt: the higher is Pt, the more precise is pub-
lic information, the less financial institutions are going to use their private knowledge
when forming their beliefs. Conversely, it is increasing in p: higher precision of private
information implies a higher reliance on the private signal.

2.3 Information: Agency

In the economy there is a public authority, generically called agency, that has the power to
observe in each period the investment decisions of the financial institutions, and to send,
in each period, a public signal to them, determining the public information available to
the financial institutions. The agency’s knowledge derives from a learning process. In the
initial period, the agency does not have superior information about θ then the financial
institutions, in particular, it shares the same common prior θ ∼ N(θ̄, 1/Pθ) with all the
financial institutions.

The agency’s learning process is through the observation of the actions of financial
institutions. In particular, the agency has the power to collect information about θ by ob-
serving, with some noise, the change in the financial institutions’ portfolio composition.
Formally, in any period t the agency observes a signal:

Si,t = xi,t + εt (11)

where εt ∼ N(0, 1/ p̃ε), i.i.d. over time and independent of ηi, represents the measure-
ment error, aggregate and not financial institution dependent, of the collection process of
the agency. Given the optimal choice xi,t of the financial institutions, the signal Si,t reveals
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the beliefs of the financial institution i:

Si,t =
p

p + Pt
θi +

Pt

p + Pt
µP

t − 1 + εt. (12)

Since the agency is the source of public information, all the information contained in µP
t is

already part of its information set at time t, and the only relevant information it can extract
from observing the change in financial institutions portfolios is the one given by private
information. Therefore by aggregating the signals coming from all financial institutions
and by eliminating the already known µP

t , the agency observes every period a signal:

St = θ +
p + Pt

p
εt, (13)

where we have used the convention that the laws of large number holds, so that
∫

ηidi = 0

almost surely. Note that the precision of St conditional on θ is given by
(

p
p+Pt

)2
p̃ε. There

are therefore two factors that affect the quantity of information the agency can extract
from its signal. The first one is the precision of the measurement error, p̃ε. If in the
limit the agency were to be able to get rid of the noise in its signal, then it would observe
perfectly θ by aggregating the information of the financial institutions. But if the precision
p̃ε is bounded away from infinity, then perfect observation of θ is never achieved.

The second factor that determines the precision of the information the agency receives
is the weight financial institutions place on their own private information when forming
their beliefs, p

p+Pt
. The higher the relative precision of private information with respect

to public information, the more useful is the information the agency can extract from the
financial institutions. This factor will be key in determining the welfare values of public
communication.

Note that St changes over time by the realization of the measurement error εt, but
more importantly by the contemporaneous level of public knowledge Pt. Therefore the
evolution of public knowledge over time determines the quality of the signal observed
by the agency. We are going to define St(Pt) = {S0(P0), . . . , St(Pt)} to be the history of
signals the agency has received at end of any period t.

2.4 Public Communication and Endogeneity of Public Beliefs

We are going to assume that, at the beginning of every period t, the agency can choose
either to not communicate anything, or to communicate its mean beliefs using the infor-
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mation at its disposal. Since this is done before financial institutions make their choice, the
mean beliefs is conditional on the history of observed signals by the agency St−1(Pt−1).7.
Formally:

Θt =

∅

E[θ|St−1(Pt−1)]
∀t, (14)

where ∅ defines the no message choice, and E[θ|St−1(Pt−1)] defines the mean posterior
belief of the agency conditional on the history of signal observed. Note that by explicitly
defining the public message we have also implicitly proven the conjecture made above
about its distribution and its independence from the private information. Given that the
public signal is the mean of the posterior beliefs of the agency, this object is normally dis-
tributed, and its noise terms εs, which are the aggregate measurement error of the signals
received by the agency, are independent of ηi, the noise realization in private information.
Therefore public and private information are, conditionally on θ, independent.

Public communication decisions affect in two fundamental ways the beliefs of the
financial institutions. Firstly, any decision to communicate or not in period t directly in-
fluences the beliefs of the financial institutions for period t, as equations (7), (8) show.
Secondly, the communication decision, through the precision of beliefs of the financial in-
stitutions for period t, also affects the information the agency receives in the future (since
St(Pt)), and hence by how much the agency can influence through public communication
the beliefs of the financial institutions in the future.

The key element that public communication influences is the precision of beliefs Pt. As
we have seen in equation (8), Pt(Θt). On the other hand the amount of information avail-
able to the agency, and so its public message if sent, is dependent on history St−1(Pt−1),
that is Θt(Pt−1). A public communication plan8 {Θt}T

t=1 determines a relation between
past and present precision of public information Pt. The exact relation will be defined
below.

The evolution of public information beliefs is therefore endogenous in the economy.
This is true not only because public knowledge is determined by the decision to commu-
nicate or not by the agency. But also because the same information that can be released
by the agency depends on its past communication decisions. Or, equivalently, communi-

7This assumption is made without loss of generality. The same results would be obtained if the agency
would send the public signal in any period t after the financial institutions had made their choice. Given
that financial institutions have memory, they would use this signal next period when making their choice.
This would amount only to a change of time indices.

8I will use plan when talking about the problem of the agency, and history when talking about the
realization of the plan.
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cation decisions today affect what the agency will observe and know in the future.

2.5 The Agency’s problem

The objective of the agency is to choose, at time 0, a public communication plan {Θt}T
t=1

9

that maximizes ex-ante aggregate welfare.10 The particular plan chosen will determine
the endogenous precision of the public knowledge in any period t and the way financial
institutions are going to use the realization of public and private information for deter-
mining their expectation and choices. Since the agency chooses at time 0 the plan of public
communication we are assuming that the agency can credibly commit to its plan.

The ex-ante aggregate welfare function is given by the following proposition:

Proposition 1 (Aggregate ex-ante Welfare). Aggregate ex-ante welfare is given by:

W(T) = κ − 1
2

T

∑
t=0

1
p + Pt

(15)

where κ ≡ D−1θ̄ + B−1 +
T+1

2

[
(θ̄ − 1)2 + 1

Pθ

]
and B−1 and D−1 represents, respectively, the

initial aggregate endowment of risky and riskless technology.

Proof. In the appendix.

The linear-quadratic setting with the normality assumption allows us to derive an ex-
ante aggregate welfare function which depends only on the precision of the information
and not on the realizations of the signals. Aggregate ex-ante welfare is increasing in total
precision of beliefs p+ Pt in period t, that is, having more precise information is beneficial
to the financial institutions in any period. This is because not knowing θ is costly for the
financial institutions, given the adjustment costs of changing their position.

The object of this work is to analyze the problem of the agency that has to decide
its optimal public communication plan with the object of maximizing aggregate ex-ante
welfare subject to the endogenous evolution of precision of public information in the

9Note that public communication in t = 0 is not meaningful since the only information the agency can
communicate is the initial prior, common however to all financial institutions.

10There are no consumers in this model, hence the use of aggregate welfare of the financial institutions
as the objective of the agency might seem arbitrary. However we can justify it if we think of a general
equilibrium setting in which consumers own shares of the financial institutions.
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economy, that is:

max
{Θt}T

t=1

[
κ − 1

2

T

∑
t=0

1
p + Pt

]
s.t. (8), (13), (14).

2.6 The trade-off between present and future public communication

The potential source of problem with public communication lies in the dynamics of the
information flow between the financial institutions and the agency. By communicating
in period t the information at its disposal the agency provides more knowledge about θ

to the financial institutions (Pt increases), increasing period t contribution to welfare, and
since financial institutions have memory, also increases contributions to welfare in future
periods. However remember that the precision of the information the agency extracts
every period from the financial institutions is given by

Var−1[St|θ] =
(

p
p + Pt

)2

p̃ε (16)

and this is decreasing in Pt. Public communication in any period t, by increasing Pt, will
imply a less precise signal to the agency and therefore lower informational content of
public communication in the following periods. The dynamic creates a negative feedback
between precision of public communication today and tomorrow, present communica-
tion dampening the precision of future communications. This implies that welfare in
future periods can increase if no public signal is sent in period t conditional on commu-
nicating some time in the future: the agency can acquire more precise knowledge and
communicate more information in the future which will determine higher welfare bene-
fits than just communicating every period. However the future welfare benefits have to
be weighed against the welfare losses of not communicating in period t. Therefore even if
present public communication always dampens the effect of future public communication
on welfare, not always by withdrawing present public communication higher efficiency
can be achieved.

The reason for the potential efficiency loss of public communication is the fact that
financial institutions do not internalize future costs determined by underproduction of
public information. When a single financial institution receives the public signal, by rely-
ing onto it in a way proportional to its precision, decreases the informational content of
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future public communication. However this behavior is optimal for the financial institu-
tions: given their infinitesimal size, each financial institution cannot on its own influence
the precision of the information collected by the agency. As in Vives (1997), public signals
can therefore create an informational externality.

The potential trade-off between present and future public communication underscores
the fundamental question of this paper: how can public communication be designed in
such a way as to achieve maximum efficiency? Given the potential negative effect in the
future of public communication, maximum efficiency can be achieved by appropriately
choosing the timing of the public information release: when is public information most
advantageous to the financial institutions?

3 Optimal Public Communication

Given the nature of the trade-off, it is clear that the agency would want to communicate
for sure at least in the last period. Sending a public signal in the last period improves the
welfare of the agency and does not create any negative feedback on learning, since at the
end of the period the payoff θ of the risky asset is revealed. This is the initial characteri-
zation of optimal public communication plan, stated in the following proposition.

Proposition 2. Optimal public communication plans always involve communication at least in
period T.

Proof. In the text.

3.1 Delayed Public Communication Plans

Given proposition 2, we are first restricting the analysis to communication plans that in-
volve silence for some period and then communication, therefore the case of delayed pub-
lic communication. This is a strong limitation on the action space of the agency. However,
later on we will relax this restriction and we will show that the optimal communication
plan chosen in this smaller action space remains the same even when we allow for a more
general choice set. In this section the agency has to choose τ ∈ [0, . . . , T] such that:

Θt =

∅ t < τ

EA,t[θ|St−1(Pt−1)] t ≥ τ
(17)
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where ∅ defines no public signal and EA,t[θ|St−1(Pt−1)] are the mean beliefs of the agency
conditional on the information at its disposal.11 Up to period τ the agency is being silent,
then it starts revealing the mean of its beliefs. When communicating the agency is fully
transparent: every new information received will be communicated to the public next
period together with also all information received in the past.

The definition of the communication structure allows us to explicit the endogenous
precision of public information as described by equations (8). This is done in the follow-
ing proposition.

Proposition 3. The precision of public knowledge Pt, given the delayed communication plan of
the agency (17), is:

Pt =


Pθ t < τ

Pθ + τ
(

p
p+Pθ

)2
p̃ε t = τ

Pt−1 +
(

p
p+Pt−1

)2
p̃ε t > τ

(18)

Proof. In the text.

When t < τ there is no public signal, public precision is only the precision of the initial
prior the financial institutions have, Pθ.12 When t = τ the Agency sends the first public
signal, which is the mean of its belief. Given that the agency has observed τ signals, each

conditional on θ normally distributed with precision
(

p
p+Pθ

)2
p̃ε, its mean beliefs are an

equally weighted convex combination of signals St. The public signal in τ is hence given
by:

Θτ = EA,τ−1[θ] =
∑τ−1

s=0

(
p

p+Pθ

)2
p̃εSs

∑τ−1
s=0

(
p

p+Pθ

)2
p̃ε

=
∑τ−1

s=0 Ss

τ
= θ +

1
τ

p + Pθ

p

τ−1

∑
s=0

εs.

The measurement error realizations εt are i.i.d., therefore we can just sum the precision
of the signals received by the agency to determine the precision of the public signal: this

given by Var−1
τ [Θτ|θ] = τ

(
p

p+Pθ

)2
p̃ε. Since both the initial prior and the signal are

normally distributed then precision of public knowledge in τ is given by the sum of their
precisions.

For t > τ, the Agency communicates its mean beliefs every period, however the only
new information in the public signal is given by the new signal the Agency has received

11Note that the normality of signals implies that the mean is a sufficient statistics for the history of signals
observed by the agency

12Since the initial prior is common to all financial institutions, we consider it part of the public informa-
tion.
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in the last period. This is a normally distributed signal, and the precision of this new

information is given by:
(

p
p+Pt−1

)2
p̃ε (this is the precision of the signal St−1 the agency

observes in period t− 1, which constitutes the new information the agency is communi-
cating in period t). The financial institutions use both previous public information and the
new information coming from the public signal to determine the precision of the public
information beliefs at time t. Since both are normally distributed, the posterior precision
will be given by the sum of the two, which determines the recursion of public information
precision when the agency is communicating.

3.2 Optimal Delayed Public Communication

Even though the model has been described in discrete time, in order to prove the results
it is more convenient to switch to a continuous time approximation. This approximation
allows us to obtain a closed form equation for the evolution of precision and to use stan-
dard maximization techniques to solve our problem. The approximation is obtained by
letting the observational noise of the signal to agency grow very large while at the same
time letting the agency observe the signal more and more often.13

Proposition 4. Let ∆ be the time interval, and assume that p̃ε(∆)/∆ → pε as ∆ → 0. Then the
continuous time version of evolution of public knowledge is given by:

Ṗ(t) =
(

p
p + P(t)

)2

pε (19)

Proof. Rearrange the evolution of public precision as:

Pt+∆ − Pt

∆
=

(
p

p + Pt

)2 p̃ε(∆)
∆

(20)

By taking the limit as ∆→ 0 the result obtains.

The equation in (19) is an ordinary differential equation that, together with the bound-

ary condition P(τ) = Pθ + τ
(

p
p+Pθ

)2
pε, has a unique solution given by:

P(t) = −p + (p + Pθ)
[
(1 + ατ)3 + 3α(t− τ)

]1/3
(21)

13The continuous time approximation determines that the signal the agency observes is described by a
stochastic differential equation dSt = xtdt + dW√

pε
, where W is a Weiner process, and xt =

∫
xi,tdi.
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where α ≡ p2

(p+Pθ)3 pε. Equation (21) describes the evolution of precision of public knowl-
edge at any point in time after the communication decision. Note that, as in Vives (1993)
(with discrete time) and Amador and Weill (forthcoming) (with continuous time) conver-
gence of beliefs obtains at rate t1/3.14 This is lower than the linear rate it would obtain
if financial institutions were observing every period exogenous i.i.d. signals. The lower
convergence rate is the result of financial institutions observing aggregate information of
their decisions, as Vives (1993) showed. The continuous time version of the problem of
the agency is:

max
τ∈[0,T]

[
κ −

∫ T

t=0

1
p + P(t)

dt
]

s.t. P(t) = Pθ t < τ (22)

P(t) = −p + (p + Pθ)
[
(1 + ατ)3 + 3α(t− τ)

]1/3
t ≥ τ

Note that there is no assurance of concavity of the problem in τ for all parameter values,
however maxima (the solution need not be unique) will always exist by the extreme value
theorem, since one can show by substituting the constraint and solving the integral that
the objective function is continuous over the closed and bounded interval of τ.

Before turning to the main results, the following lemma illustrates the effect of delay-
ing public communication onto the evolution of precision of knowledge.

Lemma 1 (Evolution of Precision with Delayed Communication). Let P(t) + p = (p +

Pθ)
[
(1 + ατ)3 + 3α(t− τ)

]1/3 denote the precision of beliefs under a delayed communication
plan for t ≥ τ (as in equation (21)), and P′(t) + p = (p + Pθ) [1 + 3αt]1/3 denote the precision
of beliefs when agency always communicates (τ = 0). Then, for all τ > 0, P(t) + p > P′(t) + p
for t ≥ τ.

Proof. In the appendix.

Figure 1 graphically shows the result of lemma 1 for a given τ. The bold black line
shows the evolution of the precision with delayed public communication, while the thin
gray line shows the evolution when the agency starts communicating at the beginning.
Clearly before τ the delayed public communication plan does not improve knowledge of
the financial institutions. At τ, when the agency starts communicating, precision under

14Note that, when the agency is communicating, it is as if the financial institutions were observing a
signal about aggregate choices. Thus the similarity with Vives (1993) and Amador and Weill (forthcoming)
setup and the same rate of convergence of public beliefs.
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Figure 1: Evolution of precision of knowledge

the delayed communication plan jumps higher than precision under the always com-
municating plan. The intuition is clear: by not communicating in the interval [0, τ) the
agency has been able to observe more precise information about the state of the world
with respect to the always communicating plan. Remember from equation (16) that the
precision of the signal to the agency is higher when precision of public knowledge is
lower. Since the precision of public knowledge when there is no public communication
is lower, when the agency starts communicating in period τ it has observed more pre-
cise signals with respect to the always communicating plan, therefore precision of public
knowledge in τ is higher. After τ precision of knowledge under both plans increases at
rate 1/3, hence precision under the always communicating plan will never catch up in
finite time: precision under the delayed communication plan will always be constantly
higher than under the always communicating plan.

The evolution of precision of public information directly translates into welfare, since
higher precision implies higher welfare. The choice of a delayed communication plan is
welfare improving with respect to an always communicating plan if the welfare benefits
given by having more knowledge after τ more than offset the welfare costs of not commu-
nicating before τ. If so, by choosing the appropriate τ the agency can effectively design
public communication in order to achieve maximum efficiency.

The following theorem is one of the main contributions of the paper and characterizes
the optimal public communication plans given the welfare trade-offs between having
more information now or in the future.

Theorem 1 (Delayed Optimal Communication). Consider the welfare maximization problem
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under the delayed maximization plan defined in (22). Then:

i. The problem admits unique solution τ∗;

ii. Let α ≡ p2

(p+Pθ)3 pε. For any T > 0, τ∗ > 0 if and only if α > c
T , c ∈ R++. For α ≤ c

T ,
τ∗ = 0 .

Proof. In the appendix.

The theorem states that optimal public communication plans can involve delay, a pe-
riod during which the agency does not communicate to the public but only learns. The
intuition for why delaying public communication can be optimal has already been given:
not providing a public signal induces more efficient learning of the agency and hence
a more precise future public communication. By delaying communication the agency
is effectively making the financial institutions internalize the costs of under-production
of information, in this way it solves the informational externality. Once the agency has
acquired enough knowledge then communication can start.

The intuition for when delaying public communication is optimal can better be ex-
pressed by switching back to the discrete time case. Consider the evolution of public
knowledge precision when the agency is communicating given in proposition (3), then:

∂Pt+1

∂Pt
= 1− 2

p2

(p + Pt)3 p̃ε. (23)

When increasing public precision in any period t by communicating there are two effects
happening. One is a positive memory effect (the first term in (23)): more public information
today implies more public information tomorrow, since financial institutions carry infor-
mation from the past. The other is a negative jamming effect (the second term in (23)): more
public information today decreases the informational value of future public communica-
tions, in a way public information jams the informativeness value of future communica-
tions. The jamming effect is the result of the financial institutions relying on the public
communication channel. If the jamming effect is sufficiently large, then communicating
has negative effect on tomorrow’s welfare. In such a situation public communication
implies that present and future precision of knowledge move in opposite directions: by
withholding public communication, the agency is able to increase tomorrow’s precision,
it is unjamming the public communication channel. Hence the optimality of the policy.
Since in our problem the question is not whether to increase the precision of public com-
munication but whether to communicate or not, α = p2

(p+Pθ)3 pε represents the jamming

20



effect when public communication has not yet happened, and therefore public informa-
tion in the economy is nothing else then the precision of the initial prior Pθ.

However, the jamming effect on its own is necessary but not sufficient to imply op-
timal delayed communication plans. What is also needed is that welfare losses of not
communicating for some periods are compensated. This is the role of the threshold c

T .
A longer time horizon implies that the informational benefits of delaying public com-
munication last for longer periods, therefore the threshold decreases, i.e. delayed public
communication is optimal for a larger area in the parameters’ space.

Note that α is decreasing in the precision of knowledge of the financial institutions
(p + Pθ). Hence when the financial institutions have very little knowledge about θ, the
jamming effect determined by public communication will be stronger. In this instances
delaying communication, even if hurting in the short terms the financial institutions, will
be able to let the agency efficiently accumulate information and achieve higher overall
welfare.

3.3 Optimal Generic Public Communication Plans

So far the action space of the agency has been limited to deciding when to start commu-
nicating only once. We are now going to relax this assumption, allowing for an arbitrary
finite number of periods of communication or silence by the agency, and we will let the
agency choose the length of each.

Given proposition 2, any communication plan will involve communication at least
in the last instant. Also, if the agency ever wants to be silent, it will be in the beginning,
since it is when the marginal benefits of not communicating will be highest, given that the
time horizon is the longest. Therefore an optimal communication plan will surely imply
communication in a neighborhood of t = T and might entail silence in a neighborhood of
t = 0.

Let C2n+1 = {τ1, τ2, . . . , τ2n+1}, n ∈N, such that 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τ2n ≤ τ2n+1 < T,
indicate the set of cut-points of the communication plan of the agency, i.e. the times when
the agency switches from communicating to silence or viceversa. Since optimal commu-
nication plans might entail silence but will surely end with communication, we consider
plans that start with the possibility of silence and end with communication, hence the
even number of intervals (or the odd number of elements in the set). The agency is silent
in [0, τ1), communicates in [τ1, τ2), is silent again in [τ2, τ3), and so on.15 The intervals in

15The assumption that the communication plan starts with a silence period is without loss of generality,
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which the agency is communicating have as lower bound an odd index number, i.e. are
of the type [τ2k+1, τ2(k+1)). Conversely the agency is not communicating in the intervals
[τ2k, τ2k+1). The set C2n+1, together with assumption that Θt = ∅ for t ∈ [τ2k, τ2k+1) and
Θt = EA,t[θ] for t ∈ [τ2k+1, τ2(k+1)), for all k ≤ n, where τ0 ≡ 0 and τ2(n+1) ≡ T, fully
define a generic communication plan of the agency parametrized by n. With an abuse of
notation we will also indicate as W : R2n+1 → R to be the ex-ante aggregate welfare as
function of C2n+1. The problem of the agency is therefore to max{τj∈C2n+1}2n+1

j=1
W(C2n+1)

subject to the endogenous evolution of precision of information. The following proposi-
tion describes the optimal public communication plan in a generic action space.

Theorem 2 (Optimal communication in general action space). Let W(τ∗) indicate the max-
imum ex-ante aggregate welfare achievable under the delayed communication plan, where τ∗ =

arg maxτ∈[0,T] W(τ). Then, for all n ≥ 1, for all τi ∈ C2n+1, i = 1, . . . , 2n + 1, W(τ∗) ≥
W(C2n+1), with equality if and only if, for any 0 ≤ k ≤ n, τ2k+1 = τ∗, τ2(j+1) − τ2j+1 = 0 for
all j < k and τ2j+1 − τ2j = 0 for all j > k.

Proof. In the appendix.

The theorem states that it is not possible to achieve strictly higher welfare by using
a communication plan that is different from the delayed communication plan. There-
fore optimal public communication plans always involve a unique bang-bang behavior:
communication goes from nothing to everything, but it never reverts back.

This result is somewhat striking, since one could imagine that releasing an initial
amount of information, in order to improve at the beginning the welfare of the finan-
cial institutions when they need it most, then shutting down communication in order to
efficiently collect information and finally communicating again, might lead to a higher
overall welfare. This is indeed not the case, and any communication plan with an arbi-
trary number of communication and silence intervals, each of any length, will not give
higher welfare then the simple one cut-point plan.

The intuition for the proof is based on two observations. The first one is that the prob-
lem in the general action space can actually be decomposed into smaller problems by
recursively choosing the length of the last communication period given all other inter-
vals. The problem becomes quite tractable because the precision of public information
at any point in time is the only information needed for choosing deciding over the next
communication spell. For instance, if the agency wants to choose τ2n+1 ∈ [τ2n, T) the
only relevant information is the precision of public information P(τ2n) and the length of

since the agency has always the option to set τ1 = 0 and therefore to start with communication.
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the interval over which we are maximizing, T − τ2n. This problem is isomorphic to the
problem presented in proposition (1), but a new threshold rule will apply here, one based
on the amount of public information available in τ2n. If p2

(p+P(τ2n))3 pε >
c

T−τ2n
, then it will

be optimal to set τ2n+1 > τ2n, otherwise the agency is always communicating in the inter-
val (τ2n, T]. In this way the problem can be solved recursively from the choice of the last
cutpoint, similar to a backward induction solving method.

The second, and most important observation, is that there is monotonicity in the be-
havior of the constraint. Consider the constraint at some point in time τj ∈ [0, T]. The

jamming effect is given by p2

(p+P(τj))3 pε. By going backwards then, for any communication

strategy, P(τj) can only weakly decrease, making the jamming effect weakly increase. On
the other hand the threshold c

T−τj
decreases as τj decreases. Therefore if the constraint

binds at some point in time, for sure it binds also in previous points. Said differently, the
constraint can only be binding for some compact interval [0, τ̄] ⊆ [0, T]

The two observations imply that when the agency is choosing its communication plan,
if τ̄ = 0, the constraint never binds, the jamming effect is never strong enough then the
optimal plan involves always communicating. If τ̄ > 0, then the agency will choose to al-
ways communicate for all choices in [τ̄, T], and in [0, τ̄] by recursively solving backwards,
it will iteratively eliminate communication/not communication periods until the optimal
communication plan involves the unique cut-point τ∗.

3.4 Comparative Statics

The choice of when to start communicating, τ∗, will be determined by equating the
marginal costs of being silent for one more unit of time versus its marginal benefits. The
marginal costs are clear: an additional period of silence implies an additional period in
which the financial institutions have only their private information and prior to determine
the value of θ, therefore an additional period in which utility is given by 1

p+Pθ
. Marginal

benefits have a less straightforward formulation, however they characterize the effect on
welfare from τ∗ to T of being silent one additional instant.16

A different way to interpret the condition α > c
T from theorem 1 is that it provides a

necessary and sufficient condition for having, in a neighborhood of τ = 0, the marginal

16Formally marginal benefits are:

1
p + Pθ

+
ατ

p + Pθ
− ατ(ατ + 2)

p + P(T|τ, α)

where p + P(T|τ, α) = (p + Pθ)[(1 + ατ)3 + 3α(T − τ)]1/3.
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benefits of delaying communication higher than its marginal costs. Since we argued that it
is always optimal to communicate before T, the welfare function must exhibit decreasing
marginal benefit of delaying communication, that is, welfare must be concave in τ, at
least in a neighborhood of T. Given marginal benefits higher than marginal cost in a
neighborhood of τ = 0 then it will be optimal to delay communication, until decreasing
marginal benefits kick in. Concavity of the welfare function in τ pins down τ∗.

It is not straightforward to analyze how parameters affect marginal costs and marginal
benefits. They enter both terms in non-monotonic ways, obfuscating the comparative
statics. However most analysis can be done by studying the effect of parameters on the
jamming effect, α. The following proposition provides comparative statics results:

Proposition 5 (Comparative Statics). Let c ∈ R++ as in theorem (1), γ ∈ R++, γ > 1 and
α ≡ p2

(p+Pθ)3 pε. If τ∗ > 0 then

i. τ∗ is monotonically increasing in T;

ii. there exists α′ ≡ γ c
T , such that τ∗ is increasing in α for α < α′ and τ∗ is decreasing in α for

α > α′, moreover τ∗ → 0 as α→ ∞;

iii. there exists p′ε such that τ∗ is increasing in pε for pε < p′ε, and decreasing in pε for pε > p′ε;

iv. if pε

p > γ c
T then there exists P′θ such that τ∗ is increasing in Pθ for Pθ < P′θ and is decreasing

in Pθ for Pθ > P′θ, otherwise τ∗ is monotonically decreasing in Pθ;

v. let p∗ be the unique maximizer of α over p. If α(p∗) > γ c
T , then there exists p′ and p′′,

p′ < p∗ < p′′, such that:

• τ∗ is increasing in p for p < p′ and for p∗ < p < p′′;

• τ∗ in decreasing in p for p′ < p < p∗ and for p > p′′;

otherwise:

• τ∗ is increasing in p for p < p∗;

• τ∗ is decreasing in p for p > p∗

Proof. In the appendix.

Part i. of previous proposition is the only one whose intuition can be provided easily
in terms of equalizing marginal benefits and marginal costs of not communicating. If the
horizon over which the information flow between the agency and the financial institu-
tions increases, T, then the benefits of delayed communications can be felt for a longer
interval of time. This increases the marginal benefit of delayed communication, while
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marginal costs do not vary. The optimal revelation time increases, decreasing marginal
benefit of delaying communication and reestablishing equality with marginal costs.

Figure 2 represents part ii. of proposition 5, which characterizes the hump-shaped be-
havior of the optimal delay time in communication. Why is τ∗ non monotonic? There are

τ∗

αc
T γ c

T

Figure 2: Optimal delayed plan as function of α

two connected effects pulling the optimal policy in opposite directions: the jamming effect
and the precision of the signal the agency receives. The jamming effect, that is, the im-
pairment in learning the agency experiences after communicating, is stronger the higher
the precision of the signals the agency receives.17 This is clear: when the agency has very
precise information, communicating implies that financial institutions heavily rely on it,
preventing future efficient production of information, and increasing the jamming effect.
However, while the jamming effect pushes for a delay of public communication in order
to efficiently learn, a more precise signal to the agency pushes towards an early revela-
tion, since the agency is learning more. This explains the non monotonicity of τ∗: initially
for low values of α, the jamming effects dominates. However, as the signal to the agency
becomes more precise, this effect starts to dominates. The agency can learn faster and
therefore it pushes for a shorter delay period.

For sake of clarity consider pε, the precision of the measurement error, since both the
jamming effect and the precision of the signal to agency are monotone increasing trans-
formation of pε. When pε is small (but such that it is optimal, for given other parameters’
values, to delay communication), an increase in pε raises the jamming effect since the

17Remember from equation (16) that, when not communicating, the agency observes a signal whose

precision is given by
(

p
p+Pθ

)2
pε, and the jamming effect α, is given by p2

(p+Pθ)3 pε. Therefore the same
change in parameters that makes the jamming effect increase, also increases the precision of the signal to
the agency. This is not always true for p, as explained later.
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agency has more precise information and public communication would make financial
institutions heavily use it. However as the measurement error becomes smaller (pε in-
creases), the agency is able to infer almost perfectly θ, therefore there is no need to wait
long before communicating. That is why, as pε → ∞, the optimal policy is to reveal as
early as possible.18

The reaction of the optimal delay time τ∗ with respect to changes in precision Pθ of the
initial prior also depends on the interaction of the two effects, with an important change:
an increase in Pθ now decreases both the jamming effect and the precision of the signal
to the agency (since financial institutions are relying less on their private information).
Therefore the hump-shaped behavior of τ∗ obtains only if other parameters’ values are
such that the threshold that sets the limit of the jamming effect is achieved (threshold
given by γ c

T ). Otherwise an increase in the precision of public initial knowledge, by
lowering the jamming effect, pushes towards early releases of information.

The comparative statics for p, the precision of private information, is quite involved:
the two effects described above can change in opposite directions as p changes. While
an increase in p always increases the precision of the signal the agency receives (since
it is able to extract more information from the choices of the financial institutions), the
effect of p on the jamming effect is non monotonic.19 Intuitively, when p is sufficiently
small, an increase in p increases the jamming effect since there is low general knowledge
among financial institutions, and public information will be heavily used. On the other
hand if p is sufficiently large, an increase in p decreases the jamming effect, since financial
institutions already have sufficiently good private knowledge and will not rely too much
on public information. This behavior, interacting with the two opposite jamming and
increased learning effects, determines the oscillating behavior of τ∗ as precision of private
information changes.

18Morris and Shin (2005) discuss the contrasting effects of the increased power of observation for central
banks as providing more information to the agents but also generating excessive coordination of agents’
beliefs on public information, and so suppressing the channel through which dissenting agents can express
their views. They call this the “paradox of transparency” (p. 19). The two effects described in Morris and
Shin (2005) are here the increase in signal precision to the agency and the increase in the jamming effect as
pε increases. The analysis in this paper on the one hand highlights a way to solve the paradox described
by Morris and Shin, that is to delay communication. On the other hand, by providing exact comparative
statics with respect to pε, it clarifies how the two effects balance each other in determining the optimal delay
time.

19The non monotonicity depends on p and Pθ . If p < 2Pθ , then ∂α
∂p > 0.
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4 Conclusions and further directions for research

This works builds a model of the information flow between financial institutions and a
public agency. The agency learns about a fundamental of the economy only by observing
the actions of the financial institutions and has to decide upon a plan of public com-
munication. Given the information structure, we show that there is a negative feedback
between public communication today and tomorrow, such that, if the agency decides to
publicly communicate its beliefs, this implies a lower informational value of future public
communication. The paper characterizes public communication plans that maximize ex-
ante aggregate welfare and shows that, under some conditions, optimal communication
plan involves delay, that is, an initial period in which public communication is absent
followed by a period of public communication. Delayed communication can be optimal
especially when financial institutions have scarce knowledge of the fundamentals of the
economy. When it is optimal to delay communication two opposite forces determine the
delay time: excessive reliance on public information, the jamming effect, and increased
learning of the agency. In addition we show that there are no other public communication
plans that achieve higher welfare than the simple bang-bang communication plan.

The general implications of this research are twofolds: on the one hand it describes
how, when information is endogenously created, transparency and public communica-
tion can have indirect effects on welfare by the mechanism of information production
itself, something that was not pointed out in the literature before. On the other hand it
highlights the fact that timing of public communication is fundamental, even in situations
when information evolves continuously and there are no shocks to the system. Govern-
mental agencies involved in public communication should take into account these two
features of the communication decision when thinking about disclosure of information.

The direct continuation of the analysis in this paper involves introducing markets.
This can be done by borrowing from the finance literature on noise traders. The price
will effectively constitute a public signal always available to the financial institutions.
However public communication by the agency will not become irrelevant. Since its origin
lies in a different mechanism than price formation it will offer information orthogonal to
prices. In addition if precision of private knowledge is low and prices do not constitute a
sufficiently precise signal because of large amount of noise trading, then knowledge of the
financial institutions will be low and in this case the jamming effect can be quite strong.
This will imply that the basic trade-off between present and future communication will
always be present. The introduction of markets has the implication that now the agency
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will have to choose whether to let financial institutions learn from markets only or to
contribute to the information mechanism of prices.

This work does not allow for the richest action space for the agency. The most general
setting would be to allow the agency to add noise to its public signal, and decide on the
precision of this noise in each period. This work restricted attention to communication
plans that assume precision of noise of either 0, when the agency is not communicating,
or infinity, when the agency is communicating exactly its mean beliefs. By introducing
the choice of precision of each signal, we can characterize the optimal path of precisions
of the public communication plan. This extension, however, generates extensive across
time correlation of the public signal, which prevents closed form proofs of propositions
and makes necessary the use of computational techniques. Miccoli (2010) studies this
problem of choosing precision of the public signal in each period in a easier setting, but
with the unknown parameter evolving over time as a random walk, and shows that opti-
mal communication plans involve garbling, that is, adding a finite amount of noise to the
public signal. This result is able to provide a justification for opaque public communica-
tion. For instance, FOMC statements are often seen as deliberately ambiguous about the
state of the economy.

On a more general point, the main message from this paper is that, when public com-
munication is about fundamentals of the economy, then transparency might not be always
optimal. Public communication about fundamentals is only one of the two types of com-
munication public agencies are involved with. The other type is public communication
about public agencies’ decisions. Here transparency is needed in order to create correct
expectations of their behavior, and this is optimal as the literature stemming from the
Barro-Gordon model analyzes. For instance, Gosselin, Lotz and Wyplosz (2008) build a
model in which public communication influence agents’ expectations formations about
behavior of the Central Bank, and as such is welfare enhancing.

However future policy decisions are based on estimates of fundamentals and this im-
plies that there is an connection between the two types of communication of public agen-
cies. Consider the rate of interest policy of the Fed: any communication about future
FOMC decisions helps the investment decisions of the agents in the economy. But choos-
ing a future rate of interest cannot prescind from the information the Fed has about the
business cycle, hence about fundamentals of the economy. Communication about future
policy decisions therefore also reveals the Fed beliefs about deep parameters, and, by in-
fluencing the actions of the agents in the economy, also affects the beliefs of the Fed about
the state of the world. Studying how communication about fundamentals affects com-
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munication about future policy decisions and viceversa, and what are the welfare effects
of each of them, is the next step in characterizing optimal public communication plans.
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A Proofs not in main body

A.1 Proof of proposition 1, Aggregate ex-ante Welfare

Proof. The aggregate ex-ante period t contribution to welfare is given by

E0

[
xi,t(θ − R)− λR

2
x2

i,t

]
=⇒ 1

2λR
E0
[
(Ei,t[θ]− R)2]

where we made use of optimal change in positions xi,t =
Ei,t[θ]−R

λR and the law of iterated expecta-

tion. Expanding the square:

1
2λR

E0
[
(Ei,t[θ]− R)2] = 1

2λR
(
E0
[
Ei,t[θ]

2]− 2RE0 [Ei,t[θ]] + R2) .

By iterated expectation E0 [Ei,t[θ]] = E0[θ] = θ̄, and

E0
[
Ei,t[θ]

2] = E0
[
Ei,t[θ

2]−Ei,t[θ
2] + Ei,t[θ]

2] = E0[θ
2]−Vart[θ] = E0[θ

2]− 1
p + Pt

.

The first expectation can be computed using results for the non-central chi-squared distribution,

E0[θ2] = 1
Pθ
+ θ̄2. By repeating these steps for all periods t and summing them up, we obtain the

expression for ex-ante aggregate welfare:

B−1R + D−1θ̄ + β(T + 1)
[

1
Pθ

+ (θ̄ − R)2
]
− β

T

∑
t=0

1
p + Pt

where β ≡ 1
2λR and B−1 and D−1 represents respectively the initial aggregate endowment of risky

and riskless technology. By letting λ = R = 1, the result is obtained.

A.2 Proof of lemma 1, Evolution of Precision with Delayed Communi-

cation

Proof. i. We will first prove the statement for t = τ. By contradiction suppose that P(τ) + p ≤
P′(τ) + p, then

P(τ) + p ≤ P′(τ) + p =⇒ (1 + ατ) ≤ [1 + 3ατ]1/3

=⇒ (1 + ατ)3 ≤ [1 + 3ατ] (by the cubic monotone transformation)

=⇒ 3α2τ2 + α3τ3 ≤ 0 (by expanding cube and cancelling terms)

which cannot be true since τ > 0 and α > 0. Hence P(τ) + p > P′(τ) + p.

ii. Now let’s consider t > τ. By contradiction suppose that there exists some t̄ > τ such that
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P(t̄) + p ≤ P′(t̄) + p. Then by i. and continuity there must exist t̃ > τ such that P(τ) + p =

P′(τ) + p. By solving the expression we obtain 3α2τ2 + α3τ3 = 0, which again cannot be true

since τ > 0 and α > 0.

A.3 Proof of theorem 1, Delayed Optimal Communication

Proof. The proof involves solving the maximization problem of the agency under the delayed com-

munication plan. There is no assurance of concavity of the problem, hence we need to study the

sign of the first derivative in order to ascertain whether solutions to first order conditions are max-

imizers or minimizers of the problem. Since we will provide conditions under which maximizers

satisfy first and second order conditions, the conditions found are necessary and sufficient.

Plugging the solution to the ODE in the expression for ex-ante welfare, and solving the inte-

gral, we obtain:

W(τ, T) = κ −
∫ τ

0

1
p + Pθ

dt−
∫ T

τ

[
(1 + ατ)3 + 3α(t− τ)

]−1/3

p + Pθ
dt

= κ − τ

p + Pθ
− 1

2(p + Pθ)α

{[
(1 + ατ)3 + 3α(T − τ)

]2/3 − (1 + ατ)2
}

∝ −τα− 1
2
[
(1 + ατ)3 + 3α(T − τ)

]2/3
+

1
2
(1 + ατ)2

where terms which affect only the level of the function have been excluded. Let x ≡ 1 + ατ and

W(τ, T) ≡ ω(x). Since τ ∈ [0, T], then x ∈ [1, 1 + αT]. We want to solve:

max
x∈[1,1+αT]

ω(x) = max
x∈[1,1+αT]

{
−x + 1− 1

2
[
x3 + 3αT − 3(x− 1)

]2/3
+

1
2

x2
}

One can check that ω(x) is not concave in x for all parameters values, therefore we will rely on

studying the sign of the first derivative for finding maxima. Taking the first order condition and

setting it equal to 0:

∂ω(x)
∂x

= −1−
[
x3 + 3αT − 3(x− 1)

]−1/3
(x2 − 1) + x = 0

=⇒ (x− 1)
[
1− (x + 1)

[
x3 + 3αT − 3(x− 1)

]−1/3
]
= 0

The equation has two solutions, the first one being x = 1 which is the corner solution τ = 0. The

second one is obtained by solving:

1− (x + 1)
[
x3 + 3αT − 3(x− 1)

]−1/3
= 0 =⇒ 3x2 + 6x− 3αT − 2 = 0

31



This is a quadratic equation, whose solutions are given by x1,2 = −1±
√

5/3 + αT. The solution

x2 = −1−
√

5/3 + αT always falls out of the admissible range of x, hence we can discard it. The

other is inside the admissible range of x if and only if (−1 +
√

5/3 + αT) > 1, which is true if and

only if α > 7
3T . Note that this solution is always lesser than the upper bound of the range of x

since (−1 +
√

5/3 + αT) < 1 + αT for all α, T > 0.

In order to choose which solutions are maxima or minima we will study the sign of the first

derivative of ω(x). At the extrema of the admissible range of x we have that
[

∂ω(x)
∂x

]
x=1

= 0, and[
∂ω(x)

∂x

]
x=1+αT

= − αT
1+αT < 0, for all α, T > 0. There are two cases two consider, one when α > 7

3T

and there are two critical points, and the other one when α ≤ 7
3T and there is only one critical

point.

• Case 1: α > 7
3T

By the analysis of the solution of the first order condition equalized to 0, we know that

if α > 7
3T , ∂ω(x)

∂x = 0 only once for x ∈ (1, 1 + αT], when x∗ = −1 +
√

5/3 + αT. Since[
∂ω(x)

∂x

]
x=1+αT

< 0 then by continuity ∂ω(x)
∂x < 0 for x ∈ (x∗, 1 + αT].

We want to understand the sign of ∂ω(x)
∂x in a neighborhood of x = 1. Let ∂ω(x)

∂x = f (x)g(x),
where f (x) = x − 1 and g(x) = 1− (x + 1)

[
x3 + 3αT − 3(x− 1)

]−1/3. g(1) = 1− 2(1 +

3αT)−1/3 > 0 for α > 7
3T . Therefore, by continuity, ∂ω(x)

∂x > 0 for x in a neighborhood of 1.

But since ∂ω(x)
∂x = 0 only at x∗, then ∂ω(x)

∂x > 0 for x ∈ (1, x∗).

Therefore when α > 7
3T , x = 1 is not a maximizer, and x∗ = −1 +

√
5/3 + αT is the unique

global maximizer of ω(x).

• Case 2: α ≤ 7
3T

When α ≤ 7
3T , since the first order condition will be equal to 0 only at x = 1, and will be

negative at the upper bound of x, by continuity ∂ω(x)
∂x < 0 for x ∈ (1, 1 + αT], therefore

x∗ = 1 is the unique global maximizer.

Remembering that τ = x−1
α , and letting c ≡ 7

3 , the result is obtained.

A.4 Proof of theorem 2, Optimal communication in general action space

Proof. The proof is an algorithm for finding the solutions of the maximization problem. Given that

for each solution first and second order conditions holds, it will define necessary and sufficient

conditions for optimality.

There are many building blocks to the proof, however it is based on three simple observations:

i) the amount of precision of public knowledge at any point in time is the only relevant information

the agency needs for choosing the next communication spell; ii) the problem can be decomposed

into choosing optimally the last element of the sequence given everything else; iii) choosing the
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last element of the sequence implies solving a problem that is isomorphic to the one solved in

proposition (1).

In order to prove the statement the following three lemmas provide the basic building blocks.

The first lemma is the special case for n = 1 of the statement we want to prove.

Lemma 2. Consider a communication plan as the following:

Θt =



∅ 0 ≤ t < τ1

EA,t[θ] τ1 ≤ t < τ2

∅ τ2 ≤ t < τ3

EA,t[θ] τ3 ≤ t ≤ T

(24)

with 0 ≤ τ1 ≤ τ2 ≤ τ3 < T. Let τ∗ = arg maxτ∈[0,T] W(τ), as in theorem (1), and let {τ∗1 , τ∗2 , τ∗3 } =
arg max{τ1,τ2,τ3}W(τ1, τ2, τ3). Then the optimal policy {τ∗1 , τ∗2 , τ∗3 } as specified in communication plan
(24) will replicate the communication policy under a delayed plan in theorem (1), that is, either τ∗2 − τ∗1 = 0

and τ∗3 = τ∗, or τ∗1 = τ∗ and τ∗3 − τ∗2 = 0.

Proof. The precision of public knowledge implied by using a communication plan as in (24) for

arbitrary τ1 ≤ τ2 ≤ τ3 is found by using the the continuous time version of evolution of public

knowledge (19) together with the boundaries conditions. The first boundary condition is given by

the amount of public knowledge at τ1, P(τ1) = Pθ + τ1

(
p

p+Pθ

)2
pε. The second boundary condition

is defined by the amount of public knowledge in τ3. When the agency starts communicating in

τ3, it will communicate all the signals observed. However only the ones received during (τ3 −
τ2) constitute new public information. Hence the boundary condition in τ3 is P(τ3) = P(τ2) +

(τ3 − τ2)
(

p
p+P(τ2)

)2
pε. The precision of public knowledge implied by such communication plan

is therefore given by:

P(t) =



Pθ 0 ≤ t < τ1

−p + (Pθ + p)
[
(1 + ατ1)

3 + 3α(t− τ1)
]1/3

τ1 ≤ t < τ2

−p + (Pθ + p)
[
(1 + ατ1)

3 + 3α(τ2 − τ1)
]1/3

τ2 ≤ t < τ3

−p + (P(τ2) + p)
[
(1 + α(τ3−τ2)

(1+ατ1)3+3α(τ2−τ1)
)3 + 3α(t−τ3)

(1+ατ1)3+3α(τ2−τ1)

]1/3
τ3 ≤ t < T

(25)

where α ≡ p2 pε

(Pθ+p)3 .

We are going to analyze sequentially optimal choices, i.e. analyze what is the optimal value of

τ∗3 for given arbitrary τ1, τ2, then the optimal τ2 for given τ1 and τ∗3 , finally the optimal τ1 for given

τ∗2 , τ∗3 .
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The attainable welfare as function of (τ1, τ2, τ3) is:

W(τ1, τ2, τ3)=

T∫
t=0

[
(θ̄ − 1)2+

1
Pθ

]
dt−

τ1∫
t=0

1
p + Pθ

dt−
τ2∫

t=τ1

1
p + P(t)

dt−
τ3∫

t=τ2

1
p + P(τ2)

dt−
T∫

t=τ3

1
p + P(t)

dt

∝
1

2α(Pθ + p)

{
−2ατ1 + (1 + ατ1)

2 −
[
(1 + ατ1)

3 + 3α(τ2 − τ1)
]2/3 − 2α(τ3 − τ2)

[(1 + ατ1)3 + 3α(τ2 − τ1)]
1/3+

−
[
(1 + ατ1)

3 + 3α(τ2 − τ1)
]2/3

[(
1 +

α(τ3 − τ2)

(1 + ατ1)3 + 3α(τ2 − τ1)

)3

+
3α(T − τ3)

(1 + ατ1)3 + 3α(τ2 − τ1)

]2/3

+

+
[
(1 + ατ1)

3 + 3α(τ2 − τ1)
]2/3

(
1 +

α(τ3 − τ2)

(1 + ατ1)3 + 3α(τ2 − τ1)

)2
}

where in the second line terms that do not depend on the optimization problem have been omitted.

Define x ≡ (1+ ατ1)
3 + 3α(τ2− τ1) and y ≡ (τ3− τ2). Given that we are considering a given τ1

for the moment, x defines a transformation on the choice variable τ2 and y a transformation on the

choice variable τ3. The restrictions on the parameter space of (τ2, τ3), τ1 ≤ τ2 ≤ τ3 ≤ T, imply that

x ∈ [(1 + ατ1)
3, (1 + ατ1)

3 + 3α(T − τ1)], y ∈ [0, T − τ1] and x + 3αy ≤ 3αT − 3ατ1 + (1 + ατ1)
3.

Substituting in the welfare function (and omitting constant terms), we obtain:

W(τ1, x, y) =− 2ατ1 + (1 + ατ1)
2 − x2/3 − 2αy

x1/3+

− x2/3

{[(
1 +

αy
x

)3
+

3αT
x
− 3αy + x + 3ατ1 − (1 + ατ1)

3

x

]2/3

−
(

1 +
αy
x

)2
}
(26)

Taking the derivative with respect to y of W(τ1, x, y) yields:

∂W
∂y

= 2α

{
x−1/3

(
x + αy

x
− 1
)
+

−
[
(x + αy)3

x2 + 3α(T − τ1)− 3αy− x + (1 + ατ1)
3
]−1/3

[(
x + αy

x

)2

− 1

]}

∂W
∂y = 0 implies

(
x + αy

x
− 1
)
= x1/3 [. . . ]−1/3

(
x + αy

x
+ 1
)(

x + αy
x
− 1
)

(27)

The first solution obtains when
(

x+αy
x − 1

)
= 0, which is y = 0. The other solutions are found by

solving:

x−1/3 [. . . ]1/3 =

(
x + αy

x
+ 1
)

34



After some algebraic manipulation you can obtain a quadratic equation in y given by:

y2 + 4
x
α

y +
8
3

( x
α

)2
− x

α

[
(T − τ1) +

(1 + ατ1)
3

3α

]
= 0

whose solutions are y =
−6x±

√
3
√

4x2+x[(1+ατ1)3+3α(T−τ1)]
3α . Summarizing, the first order condition

∂W
∂y = 0 has three solutions with respect to y:

y1 =
−6x−

√
3
√

4x2 + x[(1 + ατ1)3 + 3α(T − τ1)]

3α
,

y2 =
−6x +

√
3
√

4x2 + x[(1 + ατ1)3 + 3α(T − τ1)]

3α
,

y3 = 0

The first solution, y1, is not admissible since it falls outside the range of y. The third solution,

y3 = 0 is always admissible.

It can be checked that y2 < T− τ1 for all x ∈ [(1+ ατ1)
3, (1+ ατ1)

3 + 3α(T− τ1)],τ1 ≥ 0, for all

α > 0, T > 0. On the other hand y2 ≥ 0 if and only if−6x+
√

3
√

4x2 + x[(1 + ατ1)3 + 3α(T − τ1)] ≥
0, that is, if and only if x ≤ (1+ατ1)

3+3α(T−τ1)
8 . Given the restriction on the parameter space of x there

are several possible cases:

• Case 1: α < 7
3T

∀τ1 ≥ 0, (1+ατ1)
3+3α(T−τ1)

8 /∈ [(1 + 3ατ1)
3, (1 + ατ1)

3 + 3α(T − τ1)] =⇒ y2 /∈ [0, T − τ1]

• Case 2: α = 7
3T

– Sub-case i: τ1 = 0
(1+ατ1)

3+3α(T−τ1)
8 = (1 + ατ1)

3 =⇒ y2 = 0

– Sub-case ii: τ1 > 0
(1+ατ1)

3+3α(T−τ1)
8 /∈ [(1 + 3ατ1)

3, (1 + ατ1)
3 + 3α(T − τ1)] =⇒ y2 /∈ [0, T − τ1]

• Case 3: α > 7
3T =⇒ ∃τ̃1 > 0 : (1+ατ̃1)

3+3α(T−τ̃1)
8 = (1 + ατ̃1)

3

– Sub-case i: for τ1 < τ̃1 =⇒
(1+ατ1)

3+3α(T−τ1)
8 ∈ [(1 + 3ατ1)

3, (1 + ατ1)
3 + 3α(T − τ1)] =⇒

y2 ∈ (0, T − τ1] (1 + ατ1)
3 ≤ x < (1+ατ1)

3+3α(T−τ1)
8 < 3α(T − τ1) + (1 + ατ1)

3

y2 = 0 (1 + ατ1)
3 < x = (1+ατ1)

3+3α(T−τ1)
8 < 3α(T − τ1) + (1 + ατ1)

3

y2 /∈ [0, T − τ1] (1 + ατ1)
3 < (1+ατ1)

3+3α(T−τ1)
8 < x ≤ 3α(T − τ1) + (1 + ατ1)

3

– Sub-case ii: for τ1 > τ̃1 =⇒
(1+ατ1)

3+3α(T−τ1)
8 /∈ [(1 + 3ατ1)

3, (1 + ατ1)
3 + 3α(T − τ1)] =⇒ y2 /∈ [0, T − τ1]

– Sub-case iii: for τ1 = τ̃1 =⇒
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y2 = 0 (1 + ατ1)
3 = (1+ατ1)

3+3α(T−τ1)
8 = x < 3α(T − τ1) + (1 + ατ1)

3

y2 /∈ [0, T − τ1] (1 + ατ1)
3 = (1+ατ1)

3+3α(T−τ1)
8 < x ≤ 3α(T − τ1) + (1 + ατ1)

3

What the different cases imply for the optimal solution is explained below.

• Case 1 and 2: α ≤ 7
3T

The only admissible solution is y = 0, either because y2 < 0 or because y2 = y1 = 0. It can be

checked that in these parametrization ∂W
∂y < 0 for all x, y, τ1 in the admissible range. In fact,

notice from equation (27) that the sign of ∂W
∂y depends on

x−1/3 −
[
(x + αy)3

x2 + 3α(T − τ1)− 3αy− x + (1 + ατ1)
3
]−1/3 ( x + αy

x
+ 1
)

.

In particular ∂W
∂y < 0 ⇐⇒ x−1/3 [. . . ]1/3−

(
x+αy

x + 1
)
< 0. By manipulating this expression

along steps done above we obtain

∂W
∂y

< 0 ⇐⇒ y2 + 4
x
α

y +
8
3

( x
α

)2
− x

α

[
(T − τ1) +

(1 + ατ1)
3

3α

]
> 0

For α ≤ 7
3T , y1 and y2 (roots of the quadratic expression) are both non-positive, hence the

quadratic expression will be always positive for x, y, τ1 in the admissible range. Therefore
∂W
∂y < 0 and y∗ = 0 is a global maximum. But this implies that τ2 = τ∗3 , hence in the optimal

solution we are foregoing the possibility to be silent between τ2 and τ3.

• Case 3: α > 7
3T

– when τ1 < τ̃1, (1 + ατ1)
3 ≤ x < (1+ατ1)

3+3α(T−τ1)
8 < 3α(T − τ1) + (1 + ατ1)

3, then y2 > 0.

There are therefore two solutions. By studying the sign of the first order condition along

steps to the ones done above we can show that ∂W
∂y > 0 for 0 < y < y2 (with equality at

the extrema), while ∂W
∂y < 0 for y > y2. Hence y∗ = y2 > 0 is a global maximum and

y = 0 is a local minimum.

– in all other cases y2 < 0, the only solution is y∗ = 0 which can be shown to be a maxi-

mum.

Now consider:

W(y∗ = 0, x, τ1) = −2ατ1 + (1 + ατ1)
2 − [(1 + ατ1)

3 + 3α(T − τ1)]
2/3

Inserting the optimal solution y∗ = 0 in the welfare function, the x disappears (clearly now the

agency is communicating between τ1 and T, hence the choice of τ2 is irrelevant), and all we are

left with is to find the optimal τ1. But W(y∗ = 0, x, τ1) defines the same problems as theorem (1):

the optimal solution will replicate the results of that theorem. Therefore τ∗3 − τ∗2 = 0 and τ∗1 = τ∗.
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On the other hand, when y∗ > 0,

W(y∗ > 0, x, τ1) = 1 + (ατ1)
2 + 4x2/3 − 4√

3
x1/6

√
(1 + ατ1)3 + 3α(T − τ1) + 4x

By taking the derivative with respect to x:

∂W(y∗(x), x)
∂x

=
8
3

x−1/3 − 4
6
√

3
x−5/6 [(1 + ατ1)

3 + 3α(T − τ1) + 4x
]1/2

+

− 8√
3

x1/6 [(1 + ατ1)
3 + 3α(T − τ1) + 4x

]−1/2

With some algebraic manipulation we obtain that

∂W(y∗(x), x)
∂x

< 0 ⇐⇒
(

1
6
(1 + ατ1)

3 + 3α(T − τ1)

x
− 4

3

)2

> 0

Given that this expression is a square, it is always positive and so ∂W(y∗(x),x)
∂x < 0 for x, τ1 in the

relevant range. Therefore the global maximum will be achieved at the corner x∗ = (1+ ατ1)
3. This

implies that τ∗2 = τ1: there is no communication period [τ1, τ2]. The choice of τ1 is hence irrelevant,

because the agency will only choose when to start to communicate, τ3. The problem becomes then

similar to the one studied in theorem (1). In fact, y∗(x = 1, τ1 = 0) = −2+
√

5/3+αT
α , which is the

optimal solution found before in theorem (1) when α > 7
3T .

The second building block of the proof is the following lemma:

Lemma 3. Let n ≥ 1 and consider an arbitrary sequence τ1 ≤ τ2 ≤ · · · ≤ τ2n+1 defining a general
communication plan as in section 3.3. If for some j = 1, . . . , 2n + 1, p2

(p+P(τj))3 pε >
c

T−τj
, c ∈ R++, then:

• It will also hold for all k < j;

• it will always be that p2

(p+Pθ)3 pε >
c
T .

Proof. P(τj) is weakly increasing in its argument (public knowledge can only weakly increase over

time), therefore the left hand side of the inequality weakly increases for τk ≤ τ1, k < j. Also, for

all j ≥ 1, P(τj) ≥ Pθ . On the other hand the right hand side of the inequality weakly decreases for

τk ≤ τj, k < j, hence the statement.

The following is the last building block.

Lemma 4. For all n ≥ 1, if p2

(p+P(τ2n))3 pε >
c

T−τ2n
, then for all τj ∈ C2n+1, j = 1, . . . , 2n + 1, W(τ∗) ≥

W(C2n+1), with equality if and only if, for any 0 ≤ k ≤ n, τ2k+1 = τ∗, τ2(j+1) − τ2j+1 = 0 for all j < k
and τ2j+1 − τ2j = 0 for all j > k.
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Proof. Step 1
If n = 1 then the statement is true by lemma (2). Therefore fix some n > 1 and an arbitrary

sequence τ1 ≤ τ2 ≤ · · · ≤ τ2n+1. Consider the choice of the last element only, given all previous

cut-points, that is solving:

max
τ2n+1∈[τ2n,T]

W(C2n, τ2n+1)

where C2n = C2n+1 \ τ2n+1. The problem is formally isomorphic to the one studied in theorem

(1): the choice of the length of the silence period [τ2n, τ2n+1), for fixed τ2n, given that in [τ2n+1, T]
the agency is communicating. The important elements will be τ2n, the lower bound, P(τ2n), the

amount of public knowledge summarizing past communication decisions, and T − τ2n, the time

horizon. But then, using proposition (1), a particular version of the threshold result will hold, that

is if α(τ2n) ≡ p2

(p+P(τ2n))3 pε >
c

T−τ2n
then the maximizer will be strictly greater than the lower bound,

that is τ∗2n+1(C2n) > τ2n, otherwise τ∗2n+1(C2n) = τ2n. The only difference between this threshold

rule and the one of proposition (1) will be in the amount of public knowledge at beginning of

the considered interval, P(τ2n), and in the length of the interval, T − τ2n. Since by assumption
p2

(p+P(τ2n))3 pε >
c

T−τ2n
holds, then τ∗2n+1 > τ2n

Step 2
Now consider the problem of

max
{τ2n,τ∗2n+1(C2n)}∈[τ2(n−1)+1,T]

W(C2(n−1)+1, τ2n, τ∗2n+1(C2n))

that is, choosing the cut-points τ2n and τ∗2n+1, given that the agency is communicating in [τ2(n−1)+1, τ2n),

is not communicating in [τ2n, τ∗2n+1), and is communicating again in [τ∗2n+1, T]. By lemma (3) we

know that p2

(p+P(τ2(n−1)+1))
3 pε >

c
T−τ2(n−1)+1

. But then the problem is isomorphic to the one analyzed

in lemma (2) after having set τ1 = 0. Therefore by lemma (2), τ∗2n(C2(n−1)+1) = τ2(n−1)+1 and

τ∗2n+1(C2n) > τ2(n−1)+1.

Step 3
Given that optimally τ∗2n(C2(n−1)+1) = τ2(n−1)+1 we can ignore from now on the choice of τ∗2n.

Now consider solving:

max
{τ2(n−1)+1,τ∗2n+1(C2(n−1)+1}∈[τ2(n−1),T]

W(C2(n−1), τ2(n−1)+1, τ∗2n+1(C2(n−1)+1))

where the agency is not communicating in [τ2(n−1), τ2(n−1)+1, ), not communicating in [τ2(n−1)+1, τ2n+1(C2(n−1)+1))

by previous step, and communicating in τ∗2n+1(C2(n−1)+1), T]. Clearly the choice of τ2(n−1)+1 is ir-

relevant, we can just set it equal to its lower bound, and the problem can be rewritten as:

max
τ∗2n+1(C2(n−1))}∈[τ2(n−1),T]

W(C2(n−1), τ∗2n+1(C2(n−1)))
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This problem is now isomorphic to the one solved in step 1, and by lemma(3) we know that
p2

(p+P(τ2(n−1)))
3 pε >

c
T−τ2(n−1)

. Since the solution did not depend on any specific value of n, as long as

n > 1 we can repeat the same steps n times until the problem becomes:

max
τ∗2n+1∈[0,T]

W(τ∗2n+1)

where all choices of cut-points have been optimally set to the lower bound, that is τ∗i = 0 for i <
2n + 1. Then the problem is equal to the problem in proposition (1). By lemma (3) we know that

p2

(p+Pθ)3 pε >
c
T , therefore by proposition (1) the optimal solution will be to set τ∗2n+1 = τ∗ > 0.

Now the proof of the statement:

Step 1
Fix some n ≥ 1, and consider solving the following problem:

max
τ2n+1∈[τ2n,T]

W(C2n, τ2n+1)

if p2

(p+P(τ2n))3 pε > c
T−τ2n

, then by lemma (4) the statement is proved. Therefore suppose that
p2

(p+P(τ2n))3 pε ≤ c
T−τ2n

. By proposition (1) it will be optimal to set τ∗2n+1 to its lower bound, that

is τ∗2n+1 = τ2n, so that the agency is always communicating in [τ2n, T].
Step 2
Given the optimal choice in step 1, we can consider one more interval in our problem, that is

solving:

max
τ2n+1∈[τ2(n−1)+1,T]

W(C2(n−1)+1, τ2n+1)

where τ2n+1 = τ2n. The agency is communicating in [τ2(n−1)+1, τ2n = τ2n+1) and it is also commu-

nicating in [τ2n = τ2n+1, T]. Hence the choice of τ2n = τ2n+1 is irrelevant. By convention we will

set τ2(n−1)+1 = τ2n = τ2n+1.

Step 3
If n > 1, consider now solving the problem:

max
τ2n+1∈[τ2(n−1),T]

W(C2(n−1), τ2n+1)

where τ2n+1 = τ2n = τ2(n−1)+1. The problem is isomorphic to the problem solved in step 1. Since

the solution in step 1 did not depend on the choice of n, if p2

(p+P(τ2(n−1)))
3 pε > c

T−τ2(n−1)
, then by

lemma (4) the statement is proved, otherwise I can repeat the three steps n times until the problem

becomes:

max
τ2n+1∈[0,T]

W(τ2n+1)
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where all τi’s, i < 2n + 1 have been optimally set to the lower bound 0. Then the problem is equal

to the problem in proposition (1), and the optimal solution will be to set τ∗2n+1 = τ∗ > 0 if α > c
T ,

otherwise τ∗2n+1 = τ∗ = 0.

A.5 Proof of proposition 5, Comparative Statics

Proof. From theorem 1, we know that when α > c
T , where c = 7

3 , τ∗ = − 2
α +

√
5

3α2 +
T
α .

Clearly τ∗ is increasing in T. The effect of the other parameters on τ∗ can be understood by

studying the sign of ∂τ∗

∂α
∂α
∂◦ .

∂τ∗

∂α
=

1
2α2

[
4− 10/3 + αT

(5/3 + αT)1/2

]
=

> 0 for α ∈
( c

T , γ c
T

)
< 0 for α > γ c

T

where γ ≡
(

2 + 4
√

3
7

)
> 1. Remembering that α = p2

(p+Pθ)3 pε:

∂α

∂Pθ
< 0,

∂α

∂pε
> 0,

∂α

∂p
=

p pε(2Pθ − p)
(p + Pθ)4 =

> 0 for p < 2Pθ

< 0 for p > 2Pθ

Comparative statics for pε

α is monotonically increasing function of pε and it has value 0 for pε = 0. Therefore for all p, Pθ , T,

there exists p′ε such that α > c
T for pε > p′ε; and there exists p′′ε > p′ε such that α > γ c

T for pε > p′′ε .

Therefore:

• for pε ∈ (p′ε, p′′ε ],
∂τ∗

∂α > 0 (with equality at the right extremum), ∂α
∂pε

> 0, therefore ∂τ∗

∂pε
> 0

(with equality at the right extremum);

• for pε > p′′ε , ∂τ∗

∂α < 0, ∂α
∂pε

> 0, therefore ∂τ∗

∂pε
< 0.

Comparative statics for Pθ

α is a monotonically decreasing function of Pθ and α → 0 as Pθ → ∞, therefore a necessary

condition for α > c
T is that α(Pθ = 0) = pε

p > c
T . Then there exists P̃θ such that, for Pθ < P̃θ , α > c

T .

Consider the parameter values defined above, then two cases can happen:

i. α(Pθ = 0) = pε

p > γ c
T

Then there exists P′θ such that α > γ c
T for Pθ ∈ [0, P′θ ] (with equality at the right extremum),

and α < γ c
T for Pθ ∈ (P′θ , P̃θ). Therefore:

• for Pθ ∈ [0, P′θ ],
∂τ∗

∂α < 0 (with equality at the right extremum), ∂α
∂Pθ

< 0, therefore ∂τ∗

∂Pθ
> 0

(with equality at the right extremum);

• for Pθ ∈ (P′θ , P̃θ), ∂τ∗

∂α > 0, ∂α
∂Pθ

< 0, therefore ∂τ∗

∂Pθ
< 0.

40



ii. α(Pθ = 0) = pε

p ≤ γ c
T

Then for Pθ ∈ [0, P̃θ), ∂τ∗

∂α > 0, ∂α
∂Pθ

< 0, therefore ∂τ∗

∂Pθ
< 0

Comparative statics for p
α is a hump-shaped function of p, tends to 0 both as p→ 0 and as p→ ∞, and has a maximum in

p∗ ≡ 2Pθ . A necessary condition for α > c
T is that α(p∗) > c

T =⇒ pε

Pθ
> 63

4T . Let Pθ , pε, T satisfy the

previous inequality, then there exist p, p̄, such that, for p ∈ (p, p̄), α > c
T .

Let the parameters be such that, as defined before, α > c
T . Two cases can happen:

i. α(p∗) > γ c
T

Then there exists p′ and p′′ such that α > γ c
T for p ∈ (p′, p′′), with equality at the extrema.

We will have:

• for p ∈ (p, p′], ∂τ∗

∂α > 0 (with equality at the right extremum), ∂α
∂p > 0, therefore ∂τ∗

∂p > 0

(with equality at the right extremum);

• for p ∈ (p′, 2Pθ ], ∂τ∗

∂α < 0, ∂α
∂p > 0 (with equality at the right extremum), therefore ∂τ∗

∂p < 0

(with equality at the right extremum);

• for p ∈ (2Pθ , p′′], ∂τ∗

∂α < 0, ∂α
∂p < 0 (with equality at the right extremum), therefore ∂τ∗

∂p > 0

(with equality at the right extremum);

• for p ∈ (p′′, p̄), ∂τ∗

∂α > 0, ∂α
∂p < 0, therefore ∂τ∗

∂p < 0.

ii. α(p∗) ≤ γ c
T

• for p ∈ (p, 2Pθ ], ∂τ∗

∂α > 0, ∂α
∂p > 0 (with equality at the right extremum), therefore ∂τ∗

∂p > 0;

• for p ∈ (2Pθ , p̄), ∂τ∗

∂α > 0, ∂α
∂p < 0, therefore ∂τ∗

∂p < 0;
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